模拟退火旅行商问题Python可视化
时间: 2023-08-14 21:10:14 浏览: 104
模拟退火案例-旅行商问题(python)
好的,以下是一个简单的模拟退火旅行商问题的Python可视化代码:
```python
import random
import math
import matplotlib.pyplot as plt
def distance(city1, city2):
"""计算两个城市之间的距离"""
x1, y1 = city1
x2, y2 = city2
return math.sqrt((x1-x2)**2 + (y1-y2)**2)
def total_distance(route):
"""计算路径的总长度"""
dist = 0
for i in range(1, len(route)):
dist += distance(route[i-1], route[i])
dist += distance(route[-1], route[0])
return dist
def simulated_annealing(cities, temperature=1000, cooling_rate=0.003):
"""模拟退火算法解决旅行商问题"""
current_route = random.sample(cities, len(cities))
best_route = current_route[:]
while temperature > 1:
# 随机交换两个城市的位置
i, j = random.sample(range(len(cities)), 2)
current_route[i], current_route[j] = current_route[j], current_route[i]
# 计算新路径的长度
current_distance = total_distance(current_route)
best_distance = total_distance(best_route)
# 判断是否接受新路径
if current_distance < best_distance or math.exp((best_distance-current_distance)/temperature) > random.random():
best_route = current_route[:]
# 降温
temperature *= 1 - cooling_rate
return best_route
def plot_route(cities, route):
"""绘制城市和路径"""
x = [city[0] for city in cities]
y = [city[1] for city in cities]
plt.scatter(x, y, color='red')
for i in range(1, len(route)):
city1 = route[i-1]
city2 = route[i]
plt.plot([city1[0], city2[0]], [city1[1], city2[1]], color='blue')
city1 = route[-1]
city2 = route[0]
plt.plot([city1[0], city2[0]], [city1[1], city2[1]], color='blue')
plt.show()
# 生成随机城市
cities = [(random.uniform(0, 100), random.uniform(0, 100)) for i in range(20)]
# 使用模拟退火算法求解旅行商问题
best_route = simulated_annealing(cities)
# 绘制城市和路径
plot_route(cities, best_route)
```
运行代码后,将会生成一个随机城市和路径的可视化图像。其中红色点表示城市,蓝色线段表示路径。模拟退火算法会尝试不断优化路径,使得路径长度最小化。你可以尝试改变生成的随机城市数量和算法的参数,观察算法的效果和可视化结果。
阅读全文