模拟退火python旅行商
时间: 2024-12-28 10:19:17 浏览: 8
### 使用Python实现基于模拟退火算法求解TSP问题
#### 三、模拟退火算法原理
模拟退火算法(Simulated Annealing, SA)是一种概率型技术,用于在一个大的搜寻空间内寻找命题的最优解。该算法灵感来源于固体物质冷却过程中的物理现象——当温度逐渐降低时,分子热运动减弱直至达到最低能量状态。在优化问题中,“温度”的下降对应着搜索过程中逐步减少接受较差解的概率。
对于旅行商问题而言,模拟退火算法通过不断调整城市之间的访问顺序,在一定条件下允许向更差的方向移动,从而跳出局部极小值点,最终趋向全局最小值[^4]。
#### 四、求解思路
为了利用模拟退火算法解决TSP问题,需定义初始解、邻域结构以及降温策略:
- **初始化**: 随机生成一个可行的城市序列作为起始解;
- **目标函数计算**: 计算当前路径下的总距离;
- **新解产生机制**: 对现有路径做微扰动操作得到新的候选解;
- **接受准则**: 如果新解优于旧解,则直接替换;反之则依据Metropolis准则决定是否接收较劣的新解;
- **温度更新规则**: 设定合适的初温、终温和降温系数控制迭代次数与收敛速度。
#### 五、代码实例
下面给出一段简单的Python代码片段展示如何应用上述理论框架构建完整的程序逻辑:
```python
import numpy as np
from scipy.spatial import distance_matrix
def simulated_annealing_tsp(cities_coords, initial_temperature=1000, cooling_rate=0.99, stopping_temperature=1e-8):
num_cities = len(cities_coords)
# Calculate the distance matrix between cities.
dist_mat = distance_matrix(cities_coords, cities_coords)
# Initialize a random tour and calculate its length.
current_solution = list(np.random.permutation(num_cities))
best_solution = current_solution.copy()
def path_length(solution):
return sum(dist_mat[solution[i], solution[(i + 1) % num_cities]] for i in range(num_cities))
current_path_len = path_length(current_solution)
best_path_len = current_path_len
temperature = initial_temperature
while temperature > stopping_temperature:
new_solution = current_solution[:]
# Generate neighbor by swapping two randomly chosen elements of the permutation.
idx_to_swap = sorted(np.random.choice(range(len(new_solution)), size=2, replace=False))
new_solution[idx_to_swap[0]], new_solution[idx_to_swap[1]] = \
new_solution[idx_to_swap[1]], new_solution[idx_to_swap[0]]
delta_e = path_length(new_solution) - current_path_len
if delta_e < 0 or np.exp(-delta_e / temperature) >= np.random.rand():
current_solution = new_solution
current_path_len += delta_e
if current_path_len < best_path_len:
best_solution = current_solution.copy()
best_path_len = current_path_len
temperature *= cooling_rate
return best_solution, best_path_len
if __name__ == "__main__":
city_coordinates = [
(np.random.uniform(), np.random.uniform()) for _ in range(30)] # Randomly generate some coordinates.
optimal_route, min_distance = simulated_annealing_tsp(city_coordinates)
print(f"The shortest route found is {optimal_route} with total travel cost being approximately {min_distance:.4f}.")
```
此段代码实现了基本版的模拟退火法处理TSP问题的功能,并提供了可视化的输入数据集创建方式以便观察效果.
阅读全文