np.mean(frame_corners, axis=0).astype(np.int32)
时间: 2023-12-02 14:06:35 浏览: 223
这行代码的作用是计算一个矩形框的中心点坐标。其中,`frame_corners` 是一个二维数组,记录了矩形框的四个顶点的坐标。`np.mean(frame_corners, axis=0)` 表示对 `frame_corners` 沿着第 0 维(即行)求平均值,得到一个一维数组,其元素分别是四个顶点的 x 坐标和 y 坐标的平均值。然后使用 `astype(np.int32)` 将这个一维数组的元素类型转换为整型,得到最终的中心点坐标。
相关问题
分析这个代码class OhemCrossEntropy(nn.Module): def __init__(self, ignore_label=-1, thres=0.7, min_kept=100000, weight=None): super(OhemCrossEntropy, self).__init__() self.thresh = thres self.min_kept = max(1, min_kept) self.ignore_label = ignore_label self.criterion = nn.CrossEntropyLoss( weight=weight, ignore_index=ignore_label, reduction='none' ) def _ce_forward(self, score, target): ph, pw = score.size(2), score.size(3) h, w = target.size(1), target.size(2) if ph != h or pw != w: score = F.interpolate(input=score, size=( h, w), mode='bilinear', align_corners=config.MODEL.ALIGN_CORNERS) loss = self.criterion(score, target) return loss def _ohem_forward(self, score, target, **kwargs): ph, pw = score.size(2), score.size(3) h, w = target.size(1), target.size(2) if ph != h or pw != w: score = F.interpolate(input=score, size=( h, w), mode='bilinear', align_corners=config.MODEL.ALIGN_CORNERS) pred = F.softmax(score, dim=1) pixel_losses = self.criterion(score, target).contiguous().view(-1) mask = target.contiguous().view(-1) != self.ignore_label tmp_target = target.clone() tmp_target[tmp_target == self.ignore_label] = 0 pred = pred.gather(1, tmp_target.unsqueeze(1)) pred, ind = pred.contiguous().view(-1,)[mask].contiguous().sort() min_value = pred[min(self.min_kept, pred.numel() - 1)] threshold = max(min_value, self.thresh) pixel_losses = pixel_losses[mask][ind] pixel_losses = pixel_losses[pred < threshold] return pixel_losses.mean() def forward(self, score, target): if config.MODEL.NUM_OUTPUTS == 1: score = [score] weights = config.LOSS.BALANCE_WEIGHTS assert len(weights) == len(score) functions = [self._ce_forward] * \ (len(weights) - 1) + [self._ohem_forward] return sum([ w * func(x, target) for (w, x, func) in zip(weights, score, functions) ])
这是一个实现了OHEM(Online Hard Example Mining)的交叉熵损失函数,用于解决深度学习中存在难样本或噪声样本导致训练效果不好的问题。其中,thresh表示像素的softmax预测概率阈值,小于该阈值的像素被认为是难样本;min_kept表示每张图中保留的难样本最小数量;ignore_label表示忽略的标签;weight表示权重。_ce_forward函数实现了普通的交叉熵损失的计算;_ohem_forward函数实现了OHEM的计算。在forward函数中,对于有多个输出的模型,采用了权重平衡的方式进行计算。
def predict_one_img(model, img_dataset, args): # def predict_one_img(model, img_dataset, data, target, args): dataloader = DataLoader(dataset=img_dataset, batch_size=1, num_workers=0, shuffle=False) model.eval() test_dice = DiceAverage(args.n_labels) # target = to_one_hot_3d(label, args.n_labels) with torch.no_grad(): for data ,target in tqdm(dataloader, total=len(dataloader)): # data = data.to(device) data, target = data.float(), target.long() target = to_one_hot_3d(target, args.n_labels) data, target = data.to(device), target.to(device) # print(data.shape) # print(target.shape) output = model(data) # output = nn.functional.interpolate(output, scale_factor=(1//args.slice_down_scale,1//args.xy_down_scale,1//args.xy_down_scale), mode='trilinear', align_corners=False) # 空间分辨率恢复到原始size img_dataset.update_result(output.detach().cpu()) pred = img_dataset.recompone_result() pred = torch.argmax(pred, dim=1) pred_img = to_one_hot_3d(pred, args.n_labels) pred_img=pred_img.to(device) test_dice.update(pred_img, target) test_dice = OrderedDict({'Dice_liver': test_dice.avg[1]}) if args.n_labels == 3: test_dice.update({'Dice_tumor': test_dice.avg[2]}) pred = np.asarray(pred.numpy(), dtype='uint8') if args.postprocess: pass # TO DO pred = sitk.GetImageFromArray(np.squeeze(pred, axis=0)) return test_dice, pred
这是一个用于预测单张图像的函数,接收一个模型、一个图像数据集和一些参数作为输入。函数首先将图像数据集加载到一个Dataloader中,然后将模型设置为评估模式并初始化一个DiceAverage对象,该对象用于计算评估指标(这里是Dice系数)。在没有梯度的情况下,对于每个数据和目标对,函数将数据和目标转换为模型所需的格式(浮点数和one-hot编码),并将它们传递给模型进行预测。预测结果被转换回原来的空间分辨率,然后被添加到图像数据集中。最后,预测结果被重新组合成一个numpy数组,并被转换为一个SimpleITK图像对象并返回。如果需要,可以在预测之后对预测结果进行后处理。函数返回测试指标和预测结果。
阅读全文