python用神经网络对鸢尾花数据集进行分类
时间: 2023-07-24 07:34:41 浏览: 23
好的,对于这个问题,首先需要导入相关的库,如下所示:
```python
import numpy as np
import pandas as pd
from sklearn.datasets import load_iris
from sklearn.model_selection import train_test_split
from keras.models import Sequential
from keras.layers import Dense
from keras.utils import to_categorical
```
然后,我们可以加载鸢尾花数据集,并对其进行分割,以便于训练和测试模型:
```python
iris = load_iris()
X = iris.data
y = iris.target
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)
```
接下来,我们需要对标签进行 one-hot 编码:
```python
y_train = to_categorical(y_train)
y_test = to_categorical(y_test)
```
然后,我们可以构建一个简单的神经网络模型:
```python
model = Sequential()
model.add(Dense(10, input_dim=4, activation='relu'))
model.add(Dense(3, activation='softmax'))
```
最后,我们可以编译模型并训练它:
```python
model.compile(loss='categorical_crossentropy', optimizer='adam', metrics=['accuracy'])
model.fit(X_train, y_train, epochs=100, batch_size=10)
# 评估模型
_, accuracy = model.evaluate(X_test, y_test)
print('Accuracy: %.2f' % (accuracy*100))
```
这样,我们就可以使用神经网络对鸢尾花数据集进行分类了。
相关推荐


















