用python,采用径向基神经网络模型将鸢尾花数据二分类。
时间: 2024-02-12 07:05:52 浏览: 87
好的,针对您的问题,我可以给出以下步骤:
1. 首先,导入必要的库:
```python
import numpy as np
import pandas as pd
from sklearn import datasets
from sklearn.model_selection import train_test_split
from sklearn.metrics import accuracy_score
from sklearn.preprocessing import StandardScaler
from sklearn.metrics.pairwise import rbf_kernel
```
2. 加载鸢尾花数据集并进行预处理:
```python
iris = datasets.load_iris()
# 取前两类鸢尾花数据作为样本
X = iris.data[:100, :]
y = iris.target[:100]
# 数据标准化
scaler = StandardScaler()
X = scaler.fit_transform(X)
# 划分训练集和测试集
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)
```
3. 定义径向基函数:
```python
def rbf(x, c, s):
return np.exp(-1 / (2 * s**2) * (x-c)**2)
```
4. 训练径向基神经网络模型:
```python
class RBFNet:
def __init__(self, hidden_size, std):
self.hidden_size = hidden_size
self.std = std
self.centers = None
self.weights = None
def train(self, X, y):
# 随机从训练数据中选取中心点
rnd_idx = np.random.permutation(len(X))[:self.hidden_size]
self.centers = X[rnd_idx]
# 计算径向基函数值
G = rbf_kernel(X, self.centers, gamma=1.0/self.std)
# 计算权重
self.weights = np.dot(np.linalg.pinv(G), y)
def predict(self, X):
G = rbf_kernel(X, self.centers, gamma=1.0/self.std)
y_pred = np.dot(G, self.weights)
return np.round(y_pred)
```
5. 测试模型性能:
```python
rbfnet = RBFNet(hidden_size=10, std=1.0)
rbfnet.train(X_train, y_train)
y_pred = rbfnet.predict(X_test)
accuracy = accuracy_score(y_test, y_pred)
print('Accuracy:', accuracy)
```
以上就是用 Python 和径向基神经网络模型将鸢尾花数据二分类的步骤,希望能对您有所帮助!
阅读全文