pytorch图像重构
时间: 2023-12-30 07:23:50 浏览: 141
pytorch图像重构是指使用PyTorch库对图像进行重建或生成。下面是一个使用PyTorch进行图像重构的示例代码:
```python
import torch
import torch.nn as nn
import torch.optim as optim
import torchvision.transforms as transforms
from torch.utils.data import DataLoader
from torchvision.datasets import MNIST
from torchvision.utils import save_image
# 定义图像重构的模型
class Autoencoder(nn.Module):
def __init__(self):
super(Autoencoder, self).__init__()
self.encoder = nn.Sequential(
nn.Linear(28*28, 128),
nn.ReLU(),
nn.Linear(128, 64),
nn.ReLU(),
nn.Linear(64, 12),
nn.ReLU(),
nn.Linear(12, 3)
)
self.decoder = nn.Sequential(
nn.Linear(3, 12),
nn.ReLU(),
nn.Linear(12, 64),
nn.ReLU(),
nn.Linear(64, 128),
nn.ReLU(),
nn.Linear(128, 28*28),
nn.Sigmoid()
)
def forward(self, x):
encoded = self.encoder(x)
decoded = self.decoder(encoded)
return decoded
# 加载MNIST数据集
transform = transforms.Compose([
transforms.ToTensor(),
transforms.Normalize((0.5,), (0.5,))
])
dataset = MNIST(root='data/', train=True, transform=transform, download=True)
dataloader = DataLoader(dataset, batch_size=64, shuffle=True)
# 初始化模型和优化器
model = Autoencoder()
criterion = nn.MSELoss()
optimizer = optim.Adam(model.parameters(), lr=0.001)
# 训练模型
num_epochs = 10
for epoch in range(num_epochs):
for data in dataloader:
img, _ = data
img = img.view(img.size(0), -1)
recon = model(img)
loss = criterion(recon, img)
optimizer.zero_grad()
loss.backward()
optimizer.step()
# 每个epoch结束后保存重构的图像
if (epoch+1) % 5 == 0:
save_image(recon.view(recon.size(0), 1, 28, 28), f'reconstructed_epoch{epoch+1}.png')
print("图像重构完成!")
```
这段代码使用了一个简单的自编码器模型来进行图像重构。自编码器由一个编码器和一个解码器组成,编码器将输入图像压缩为低维表示,解码器将低维表示解码为重构图像。在训练过程中,模型通过最小化重构图像与原始图像之间的均方误差来学习如何重构图像。
阅读全文