AttributeError: 'DataFrame' object has no attribute 'append'. Did you mean: '_append'?
时间: 2023-06-22 17:47:55 浏览: 168
这个错误通常是因为pandas的版本问题导致的。在较新的版本中,DataFrame对象的append方法已被弃用,使用concat方法来替代。您可以尝试将代码中的append方法替换为concat方法,例如:
```
# 读取每个Excel文件并将其添加到合并后的DataFrame中
for file in excel_files:
df = pd.read_excel(file, dtype=str) # 将所有内容转换为字符串
combined_df = pd.concat([combined_df, df], ignore_index=True)
```
在这个示例中,我们使用了pandas的concat方法来将新的DataFrame添加到合并后的DataFrame中。我们使用了ignore_index=True参数来避免重复的行号。
相关问题
AttributeError: DataFrame object has no attribute append . Did you mean: _append ?
This error occurs when you try to call the `append` method on a Pandas DataFrame object, but the object does not have an `append` attribute.
One possible reason for this error is that you are trying to append a DataFrame to another DataFrame using the `append` method, but you are not using it correctly. In Pandas, the `append` method does not modify the original DataFrame, but instead it returns a new DataFrame that contains the rows from both DataFrames. Therefore, you need to assign the result of the `append` method to a new variable or to the original DataFrame, like this:
```
df1 = pd.DataFrame({'A': [1, 2], 'B': [3, 4]})
df2 = pd.DataFrame({'A': [5, 6], 'B': [7, 8]})
df3 = df1.append(df2)
```
In this example, `df3` will contain the rows from both `df1` and `df2`.
If you are still getting the AttributeError, it's possible that the DataFrame object you are trying to append to does not have an `append` attribute. In this case, you can try using the `_append` attribute instead, which is a private method that is used internally by Pandas. However, be aware that using private methods may not be supported in future versions of Pandas and may cause unexpected behavior.
```
df1._append(df2)
```
AttributeError: DataFrame object has no attribute append
AttributeError: 'DataFrame' object has no attribute 'append' 错误通常发生在使用DataFrame对象的append方法时。这个错误的原因是因为在pandas的较新版本中,DataFrame对象已经不再具有append方法。
解决这个问题的方法是使用concat函数来连接两个DataFrame对象。concat函数可以在行或列方向上合并数据。如果想要在行方向上合并两个DataFrame对象,可以使用concat函数的axis参数设置为0。例如:
```python
import pandas as pd
df1 = pd.DataFrame({'A': [1, 2, 3], 'B': [4, 5, 6]})
df2 = pd.DataFrame({'A': [7, 8, 9], 'B': [10, 11, 12})
result = pd.concat([df1, df2], axis=0)
```
在这个例子中,df1和df2是两个DataFrame对象,通过concat函数,我们将它们在行方向上合并为一个新的DataFrame对象result。<span class="em">1</span><span class="em">2</span><span class="em">3</span><span class="em">4</span>
阅读全文