在LeNet-5上增加BN层,解决手写体数字识别,并比较几种算法(全连接、LeNet-5,LeNet-5+BN)在训练集上的精度变化,画出随epoch变化的曲线。 tensorflow实现

时间: 2024-03-06 11:52:15 浏览: 27
以下是使用TensorFlow实现在LeNet-5上增加BN层解决手写体数字识别,并比较几种算法在训练集上的精度变化的代码: ```python import tensorflow as tf from tensorflow.keras import layers, models, datasets import matplotlib.pyplot as plt # 加载手写体数字数据集 (train_images, train_labels), (test_images, test_labels) = datasets.mnist.load_data() # 数据预处理 train_images = train_images / 255.0 test_images = test_images / 255.0 # 定义LeNet-5模型 def LeNet5(): model = models.Sequential() model.add(layers.Conv2D(filters=6, kernel_size=(5, 5), activation='relu', input_shape=(28, 28, 1))) model.add(layers.MaxPooling2D(pool_size=(2, 2))) model.add(layers.Conv2D(filters=16, kernel_size=(5, 5), activation='relu')) model.add(layers.MaxPooling2D(pool_size=(2, 2))) model.add(layers.Flatten()) model.add(layers.Dense(units=120, activation='relu')) model.add(layers.Dense(units=84, activation='relu')) model.add(layers.Dense(units=10, activation='softmax')) return model # 定义LeNet-5+BN模型 def LeNet5_BN(): model = models.Sequential() model.add(layers.Conv2D(filters=6, kernel_size=(5, 5), input_shape=(28, 28, 1))) model.add(layers.BatchNormalization()) model.add(layers.Activation('relu')) model.add(layers.MaxPooling2D(pool_size=(2, 2))) model.add(layers.Conv2D(filters=16, kernel_size=(5, 5))) model.add(layers.BatchNormalization()) model.add(layers.Activation('relu')) model.add(layers.MaxPooling2D(pool_size=(2, 2))) model.add(layers.Flatten()) model.add(layers.Dense(units=120)) model.add(layers.BatchNormalization()) model.add(layers.Activation('relu')) model.add(layers.Dense(units=84)) model.add(layers.BatchNormalization()) model.add(layers.Activation('relu')) model.add(layers.Dense(units=10, activation='softmax')) return model # 定义全连接模型 def FullyConnected(): model = models.Sequential() model.add(layers.Flatten(input_shape=(28, 28))) model.add(layers.Dense(units=256, activation='relu')) model.add(layers.Dense(units=128, activation='relu')) model.add(layers.Dense(units=10, activation='softmax')) return model # 编译模型 LeNet5_model = LeNet5() LeNet5_model.compile(optimizer='adam', loss='sparse_categorical_crossentropy', metrics=['accuracy']) LeNet5_BN_model = LeNet5_BN() LeNet5_BN_model.compile(optimizer='adam', loss='sparse_categorical_crossentropy', metrics=['accuracy']) FullyConnected_model = FullyConnected() FullyConnected_model.compile(optimizer='adam', loss='sparse_categorical_crossentropy', metrics=['accuracy']) # 训练模型 LeNet5_history = LeNet5_model.fit(train_images.reshape(-1, 28, 28, 1), train_labels, epochs=10, validation_data=(test_images.reshape(-1, 28, 28, 1), test_labels)) LeNet5_BN_history = LeNet5_BN_model.fit(train_images.reshape(-1, 28, 28, 1), train_labels, epochs=10, validation_data=(test_images.reshape(-1, 28, 28, 1), test_labels)) FullyConnected_history = FullyConnected_model.fit(train_images, train_labels, epochs=10, validation_data=(test_images, test_labels)) # 绘制训练曲线 plt.plot(LeNet5_history.history['accuracy'], label='LeNet-5') plt.plot(LeNet5_BN_history.history['accuracy'], label='LeNet-5+BN') plt.plot(FullyConnected_history.history['accuracy'], label='Fully Connected') plt.xlabel('Epoch') plt.ylabel('Accuracy') plt.legend() plt.show() ``` 这段代码会分别训练LeNet-5、LeNet-5+BN和全连接模型,并绘制出它们在训练集上的精度随着epoch变化的曲线。可以通过比较这三个模型的训练曲线,来判断增加BN层是否对模型的训练效果有提升。

相关推荐

最新推荐

recommend-type

浅谈pytorch中的BN层的注意事项

主要介绍了浅谈pytorch中的BN层的注意事项,具有很好的参考价值,希望对大家有所帮助。一起跟随小编过来看看吧
recommend-type

pytorch之添加BN的实现

今天小编就为大家分享一篇pytorch之添加BN的实现,具有很好的参考价值,希望对大家有所帮助。一起跟随小编过来看看吧
recommend-type

软考-考生常见操作说明-202405101400-纯图版.pdf

软考官网--2024常见操作说明:包括如何绘制网络图、UML图、表格等 模拟作答系统是计算机技术与软件专业技术资格(水平)考试的电子化考试系统界面、作答过程的仿真系统,为各级别、各资格涉及输入和页面显示的部分题型提供体验性练习。
recommend-type

setuptools-34.0.3.zip

Node.js,简称Node,是一个开源且跨平台的JavaScript运行时环境,它允许在浏览器外运行JavaScript代码。Node.js于2009年由Ryan Dahl创立,旨在创建高性能的Web服务器和网络应用程序。它基于Google Chrome的V8 JavaScript引擎,可以在Windows、Linux、Unix、Mac OS X等操作系统上运行。 Node.js的特点之一是事件驱动和非阻塞I/O模型,这使得它非常适合处理大量并发连接,从而在构建实时应用程序如在线游戏、聊天应用以及实时通讯服务时表现卓越。此外,Node.js使用了模块化的架构,通过npm(Node package manager,Node包管理器),社区成员可以共享和复用代码,极大地促进了Node.js生态系统的发展和扩张。 Node.js不仅用于服务器端开发。随着技术的发展,它也被用于构建工具链、开发桌面应用程序、物联网设备等。Node.js能够处理文件系统、操作数据库、处理网络请求等,因此,开发者可以用JavaScript编写全栈应用程序,这一点大大提高了开发效率和便捷性。 在实践中,许多大型企业和组织已经采用Node.js作为其Web应用程序的开发平台,如Netflix、PayPal和Walmart等。它们利用Node.js提高了应用性能,简化了开发流程,并且能更快地响应市场需求。
recommend-type

zigbee-cluster-library-specification

最新的zigbee-cluster-library-specification说明文档。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

实现实时数据湖架构:Kafka与Hive集成

![实现实时数据湖架构:Kafka与Hive集成](https://img-blog.csdnimg.cn/img_convert/10eb2e6972b3b6086286fc64c0b3ee41.jpeg) # 1. 实时数据湖架构概述** 实时数据湖是一种现代数据管理架构,它允许企业以低延迟的方式收集、存储和处理大量数据。与传统数据仓库不同,实时数据湖不依赖于预先定义的模式,而是采用灵活的架构,可以处理各种数据类型和格式。这种架构为企业提供了以下优势: - **实时洞察:**实时数据湖允许企业访问最新的数据,从而做出更明智的决策。 - **数据民主化:**实时数据湖使各种利益相关者都可
recommend-type

解释minorization-maximization (MM) algorithm,并给出matlab代码编写的例子

Minorization-maximization (MM) algorithm是一种常用的优化算法,用于求解非凸问题或含有约束的优化问题。该算法的基本思想是通过构造一个凸下界函数来逼近原问题,然后通过求解凸下界函数的最优解来逼近原问题的最优解。具体步骤如下: 1. 初始化参数 $\theta_0$,设 $k=0$; 2. 构造一个凸下界函数 $Q(\theta|\theta_k)$,使其满足 $Q(\theta_k|\theta_k)=f(\theta_k)$; 3. 求解 $Q(\theta|\theta_k)$ 的最优值 $\theta_{k+1}=\arg\min_\theta Q(
recommend-type

JSBSim Reference Manual

JSBSim参考手册,其中包含JSBSim简介,JSBSim配置文件xml的编写语法,编程手册以及一些应用实例等。其中有部分内容还没有写完,估计有生之年很难看到完整版了,但是内容还是很有参考价值的。
recommend-type

"互动学习:行动中的多样性与论文攻读经历"

多样性她- 事实上SCI NCES你的时间表ECOLEDO C Tora SC和NCESPOUR l’Ingén学习互动,互动学习以行动为中心的强化学习学会互动,互动学习,以行动为中心的强化学习计算机科学博士论文于2021年9月28日在Villeneuve d'Asq公开支持马修·瑟林评审团主席法布里斯·勒菲弗尔阿维尼翁大学教授论文指导奥利维尔·皮耶昆谷歌研究教授:智囊团论文联合主任菲利普·普雷教授,大学。里尔/CRISTAL/因里亚报告员奥利维耶·西格德索邦大学报告员卢多维奇·德诺耶教授,Facebook /索邦大学审查员越南圣迈IMT Atlantic高级讲师邀请弗洛里安·斯特鲁布博士,Deepmind对于那些及时看到自己错误的人...3谢谢你首先,我要感谢我的两位博士生导师Olivier和Philippe。奥利维尔,"站在巨人的肩膀上"这句话对你来说完全有意义了。从科学上讲,你知道在这篇论文的(许多)错误中,你是我可以依