yolov8改进卷积
时间: 2023-09-01 13:08:23 浏览: 169
YoloV8改进策略:CoordConv给卷积加上坐标,从而使其具备了空间感知能力.zip
5星 · 资源好评率100%
Yolov8是对YOLO(You Only Look Once)目标检测算法的改进版本。在Yolov8中,卷积操作也进行了改进。具体来说,Yolov8引入了一些新的卷积模块和技术,以提高检测性能和准确度。
其中一个改进是采用了CSPDarknet53作为主干网络。CSPDarknet53是一个深度残差网络,它在Darknet53的基础上添加了CSP(Cross Stage Partial)连接。CSP连接可以减少参数数量和计算量,并提高特征表示能力。
此外,Yolov8还使用了SAM(Spatial Attention Module)和SAMBlock来引入注意力机制。SAM可以自适应地学习图像中重要区域的特征,并提高目标检测的精度。
Yolov8还引入了PANet(Path Aggregation Network)模块,用于融合不同尺度的特征图。通过PANet,Yolov8可以更好地处理不同大小的目标,并提高检测的准确性和鲁棒性。
除了这些改进之外,Yolov8还使用了更大的输入分辨率、更多的训练数据和数据增强方法,以进一步提升检测性能和鲁棒性。总体而言,通过改进卷积操作和引入新的模块和技术,Yolov8在目标检测任务上取得了更好的结果。
阅读全文