alternative hypothesis: true difference in means is not equal to 0 95 percent confidence interval: -0.6861272 18.9956510改为python
时间: 2024-10-25 14:10:35 浏览: 15
在Python中,当你执行一个统计测试,如上述的单样本T检验,得到的`alternative hypothesis: true difference in means is not equal to 0`意味着你在检验原假设(平均值差异为零),而备择假设(alternative hypothesis)认为这两个群体的均值之间存在差异。`95 percent confidence interval: -0.6861272 18.9956510`表示在95%的置信水平下,控制组和臭氧组的均值之差的范围大约是从-0.686到18.996。
如果你想在Python中显示这些信息,你可以这样做:
```python
confidence_interval = (-0.6861272, 18.9956510)
print(f"95% Confidence Interval for the difference in means: ({confidence_interval[0]:.3f}, {confidence_interval[1]:.3f})")
```
这会打印出类似这样的输出:
```
95% Confidence Interval for the difference in means: (-0.686, 18.996)
```
其中`.3f`指定浮点数的小数位数为3位。
相关问题
Two Sample t-test data: `1`$y1 and `2`$y1 t = 3.8879, df = 37, p-value = 0.0004049 alternative hypothesis: true difference in means is not equal to 0 95 percent confidence interval: 7.146246 22.701122 sample estimates: mean of x mean of y 194.4737 179.5500 结果分析
这是一个双样本t检验,样本1的样本量为n1=1,样本均值为194.4737,样本2的样本量为n2=2,样本均值为179.5500。t值为3.8879,自由度为37,p值为0.0004049。根据p值小于0.05的显著性水平,可以拒绝原假设,即认为两个样本均值的差异具有统计学意义。95%置信区间为(7.146246, 22.701122),意味着我们可以95%的置信认为两个样本均值之间的差异在这个区间内。综上所述,样本1的均值高于样本2,且两个样本均值的差异具有统计学意义。
Rstudio出现: Welch Two Sample t-test data: sheet4[, 1] and sheet4[, 3] t = 1.9594, df = 27.856, p-value = 0.06015 alternative hypothesis: true difference in means is not equal to 0 95 percent confidence interval: -0.3654956 16.3654956 sample estimates: mean of x mean of y 54.2 46.2 是什么意思
这段代码是进行了一个Welch's Two Sample t-test(韦尔奇双样本t检验),用于比较两个样本的均值是否存在显著差异。其中"data: sheet4[, 1] and sheet4[, 3]"表示比较的两个样本,"t = 1.9594"表示计算得到的t值,"df = 27.856"表示自由度,"p-value = 0.06015"表示显著性水平(一般取0.05),"alternative hypothesis: true difference in means is not equal to 0"表示备择假设为两个样本的均值不相等,"95 percent confidence interval: -0.3654956 16.3654956"表示置信区间,"mean of x mean of y 54.2 46.2"表示两个样本的均值。根据结果,p值为0.06015,大于通常的显著性水平0.05,因此无法拒绝原假设,即两个样本均值没有显著差异。
阅读全文