写一个用stm32f407实现将输入信号的幅值,频率,占空比在串口屏上输出的代码

时间: 2023-06-25 19:01:54 浏览: 75
以下是使用STM32F407实现将输入信号的幅值、频率和占空比在串口屏上输出的代码。假设输入信号为PA0引脚上的模拟信号。 ``` #include "stm32f4xx.h" #include "stdio.h" #define USARTx USART1 #define USARTx_CLK RCC_APB2Periph_USART1 #define USARTx_TX_PIN GPIO_Pin_9 #define USARTx_TX_GPIO_PORT GPIOA #define USARTx_TX_GPIO_CLK RCC_AHB1Periph_GPIOA #define USARTx_TX_SOURCE GPIO_PinSource9 #define USARTx_TX_AF GPIO_AF_USART1 #define USARTx_RX_PIN GPIO_Pin_10 #define USARTx_RX_GPIO_PORT GPIOA #define USARTx_RX_GPIO_CLK RCC_AHB1Periph_GPIOA #define USARTx_RX_SOURCE GPIO_PinSource10 #define USARTx_RX_AF GPIO_AF_USART1 #define USARTx_IRQn USART1_IRQn void USART_Config(void); void GPIO_Config(void); void TIM_Config(void); volatile uint32_t m_u32Capture1 = 0; volatile uint32_t m_u32Capture2 = 0; volatile uint32_t m_u32Frequency = 0; int main(void) { USART_Config(); GPIO_Config(); TIM_Config(); while (1) { uint16_t u16PulseWidth = m_u32Capture2 - m_u32Capture1; float fDutyCycle = (float)u16PulseWidth / (float)m_u32Frequency * 100.0f; printf("Amplitude: %d\n", (uint16_t)(4096.0f * (float)ADC1->DR / 4096.0f)); printf("Frequency: %d Hz\n", m_u32Frequency); printf("Duty Cycle: %.1f %%\n", fDutyCycle); } } void USART_Config(void) { RCC_AHB1PeriphClockCmd(USARTx_TX_GPIO_CLK | USARTx_RX_GPIO_CLK, ENABLE); RCC_APB2PeriphClockCmd(USARTx_CLK, ENABLE); GPIO_InitTypeDef GPIO_InitStructure; GPIO_InitStructure.GPIO_Pin = USARTx_TX_PIN; GPIO_InitStructure.GPIO_Mode = GPIO_Mode_AF; GPIO_InitStructure.GPIO_Speed = GPIO_Speed_50MHz; GPIO_InitStructure.GPIO_OType = GPIO_OType_PP; GPIO_InitStructure.GPIO_PuPd = GPIO_PuPd_UP; GPIO_Init(USARTx_TX_GPIO_PORT, &GPIO_InitStructure); GPIO_InitStructure.GPIO_Pin = USARTx_RX_PIN; GPIO_InitStructure.GPIO_Mode = GPIO_Mode_AF; GPIO_InitStructure.GPIO_Speed = GPIO_Speed_50MHz; GPIO_InitStructure.GPIO_OType = GPIO_OType_PP; GPIO_InitStructure.GPIO_PuPd = GPIO_PuPd_UP; GPIO_Init(USARTx_RX_GPIO_PORT, &GPIO_InitStructure); GPIO_PinAFConfig(USARTx_TX_GPIO_PORT, USARTx_TX_SOURCE, USARTx_TX_AF); GPIO_PinAFConfig(USARTx_RX_GPIO_PORT, USARTx_RX_SOURCE, USARTx_RX_AF); USART_InitTypeDef USART_InitStructure; USART_InitStructure.USART_BaudRate = 115200; USART_InitStructure.USART_WordLength = USART_WordLength_8b; USART_InitStructure.USART_StopBits = USART_StopBits_1; USART_InitStructure.USART_Parity = USART_Parity_No; USART_InitStructure.USART_HardwareFlowControl = USART_HardwareFlowControl_None; USART_InitStructure.USART_Mode = USART_Mode_Tx | USART_Mode_Rx; USART_Init(USARTx, &USART_InitStructure); USART_Cmd(USARTx, ENABLE); } void GPIO_Config(void) { RCC_AHB1PeriphClockCmd(RCC_AHB1Periph_GPIOA, ENABLE); GPIO_InitTypeDef GPIO_InitStructure; GPIO_InitStructure.GPIO_Pin = GPIO_Pin_0; GPIO_InitStructure.GPIO_Mode = GPIO_Mode_AN; GPIO_InitStructure.GPIO_PuPd = GPIO_PuPd_NOPULL; GPIO_Init(GPIOA, &GPIO_InitStructure); } void TIM_Config(void) { RCC_APB1PeriphClockCmd(RCC_APB1Periph_TIM2, ENABLE); TIM_TimeBaseInitTypeDef TIM_TimeBaseStructure; TIM_TimeBaseStructure.TIM_Period = 0xFFFF; TIM_TimeBaseStructure.TIM_Prescaler = 84 - 1; TIM_TimeBaseStructure.TIM_ClockDivision = TIM_CKD_DIV1; TIM_TimeBaseStructure.TIM_CounterMode = TIM_CounterMode_Up; TIM_TimeBaseInit(TIM2, &TIM_TimeBaseStructure); TIM_ICInitTypeDef TIM_ICInitStructure; TIM_ICInitStructure.TIM_Channel = TIM_Channel_1 | TIM_Channel_2; TIM_ICInitStructure.TIM_ICPolarity = TIM_ICPolarity_Rising; TIM_ICInitStructure.TIM_ICSelection = TIM_ICSelection_DirectTI; TIM_ICInitStructure.TIM_ICPrescaler = TIM_ICPSC_DIV1; TIM_ICInitStructure.TIM_ICFilter = 0x0; TIM_ICInit(TIM2, &TIM_ICInitStructure); NVIC_InitTypeDef NVIC_InitStructure; NVIC_InitStructure.NVIC_IRQChannel = TIM2_IRQn; NVIC_InitStructure.NVIC_IRQChannelPreemptionPriority = 0; NVIC_InitStructure.NVIC_IRQChannelSubPriority = 0; NVIC_InitStructure.NVIC_IRQChannelCmd = ENABLE; NVIC_Init(&NVIC_InitStructure); TIM_Cmd(TIM2, ENABLE); TIM_ITConfig(TIM2, TIM_IT_CC1 | TIM_IT_CC2, ENABLE); } void TIM2_IRQHandler(void) { if (TIM_GetITStatus(TIM2, TIM_IT_CC1) == SET) { m_u32Capture1 = TIM_GetCapture1(TIM2); TIM_SetCounter(TIM2, 0); TIM_ClearITPendingBit(TIM2, TIM_IT_CC1); } if (TIM_GetITStatus(TIM2, TIM_IT_CC2) == SET) { m_u32Capture2 = TIM_GetCapture2(TIM2); m_u32Frequency = SystemCoreClock / TIM_GetCapture1(TIM2); TIM_ClearITPendingBit(TIM2, TIM_IT_CC2); } } ``` 这个代码需要通过PA0引脚输入一个模拟信号,然后使用定时器2来捕捉输入信号的上升沿和下降沿。在捕捉到两个边沿后,我们可以计算输入信号的周期,频率和占空比,并通过串口将这些信息输出。

相关推荐

最新推荐

recommend-type

输出两路占空比和频率可调的互补PWM

如何利用STM32通用定时器实现输出两路占空比和频率可调的互补PWM ,高级定时器资源有限,本文利用通用定时器(General-purpose timers)实现互补PWM输出,在高级定时器资源不够时不失为一个好方法。
recommend-type

stm32 pwm输入捕捉模式学习笔记

PWM输入是输入捕获的一个特殊应用,输入捕获就是当连接到定时器的引脚上产生电平变化时对应的捕获装置会立即将当前计数值复制到另一个寄存器中。你可以开启捕获中断然后在中断处理函数中读出保存的计数值。主要用于...
recommend-type

zigbee-cluster-library-specification

最新的zigbee-cluster-library-specification说明文档。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

MATLAB取整函数与Web开发的作用:round、fix、floor、ceil在Web开发中的应用

![MATLAB取整函数与Web开发的作用:round、fix、floor、ceil在Web开发中的应用](https://img-blog.csdnimg.cn/2020050917173284.png?x-oss-process=image/watermark,type_ZmFuZ3poZW5naGVpdGk,shadow_10,text_aHR0cHM6Ly9ibG9nLmNzZG4ubmV0L2thbmdqaWVsZWFybmluZw==,size_16,color_FFFFFF,t_70) # 1. MATLAB取整函数概述** MATLAB取整函数是一组强大的工具,用于对数值进行
recommend-type

我想做python的算法工程师,我应该学什么?学习的顺序是什么?网上有什么推荐的免费课程吗?回答具体精确一点不要太笼统

对于想要成为 Python 算法工程师的人来说,他们应该先从掌握 Python 的基础语法开始,然后学习数据结构和算法,并且要深入了解 Python 中的一些科学计算和数据处理库,比如 NumPy、Pandas 等。 学习的顺序可以是先学习基础语法和编程技巧,然后再学习数据结构和算法相关的知识,最后深入了解数据处理和科学计算相关的库。 对于免费课程的推荐,我建议你可以先去 Coursera、edX、Udacity 等网站上寻找相关课程,这些网站上有很多优质的 Python 编程和算法课程,你可以根据自己的需求和学习进度进行选择。此外,还可以考虑一些在线编程网站,如 HackerRank、L
recommend-type

JSBSim Reference Manual

JSBSim参考手册,其中包含JSBSim简介,JSBSim配置文件xml的编写语法,编程手册以及一些应用实例等。其中有部分内容还没有写完,估计有生之年很难看到完整版了,但是内容还是很有参考价值的。
recommend-type

"互动学习:行动中的多样性与论文攻读经历"

多样性她- 事实上SCI NCES你的时间表ECOLEDO C Tora SC和NCESPOUR l’Ingén学习互动,互动学习以行动为中心的强化学习学会互动,互动学习,以行动为中心的强化学习计算机科学博士论文于2021年9月28日在Villeneuve d'Asq公开支持马修·瑟林评审团主席法布里斯·勒菲弗尔阿维尼翁大学教授论文指导奥利维尔·皮耶昆谷歌研究教授:智囊团论文联合主任菲利普·普雷教授,大学。里尔/CRISTAL/因里亚报告员奥利维耶·西格德索邦大学报告员卢多维奇·德诺耶教授,Facebook /索邦大学审查员越南圣迈IMT Atlantic高级讲师邀请弗洛里安·斯特鲁布博士,Deepmind对于那些及时看到自己错误的人...3谢谢你首先,我要感谢我的两位博士生导师Olivier和Philippe。奥利维尔,"站在巨人的肩膀上"这句话对你来说完全有意义了。从科学上讲,你知道在这篇论文的(许多)错误中,你是我可以依
recommend-type

MATLAB取整函数与数据分析的应用:round、fix、floor、ceil在数据分析中的应用

![MATLAB取整函数与数据分析的应用:round、fix、floor、ceil在数据分析中的应用](https://img-blog.csdnimg.cn/img_convert/a12c695f8b68033fc45008ede036b653.png) # 1. MATLAB取整函数概述 MATLAB提供了一系列取整函数,用于对数值进行四舍五入或截断操作。这些函数包括: - `round`:四舍五入到最接近的整数 - `floor`:向下取整到最小的整数 - `ceil`:向上取整到最大的整数 - `fix`:截断小数部分,返回整数部分 这些函数在数据分析、可视化和特定领域(如金融
recommend-type

r语言如何调用split函数按照factor分开后得到的dataframe

可以使用如下语句: split_dataframe <- split(original_dataframe, original_dataframe$factor_column) 其中,original_dataframe为待拆分的原始数据框,$factor_column为按照哪一列分组(即因子列),split_dataframe为拆分后得到的数据框列表。