def predict_from_naive_bayes_model(model, matrix): """Use a Naive Bayes model to compute predictions for a target matrix. This function should be able to predict on the models that fit_naive_bayes_model outputs. Args: model: A trained model from fit_naive_bayes_model matrix: A numpy array containing word counts Returns: A numpy array containg the predictions from the model """ # *** START CODE HERE *** model = NaiveBayesModel(model['log_class_priors'], model['log_likelihoods']) log_probabilities = [] for i in range(2): log_probabilities.append(np.sum(matrix * model.log_class_priors[i] + model.log_likelihoods[i])) return np.argmax(log_probabilities) # *** END CODE HERE ***代码报错NameError: name 'NaiveBayesModel' is not defined请帮我修改
时间: 2023-07-15 07:12:02 浏览: 162
根据代码报错信息可以看出,`NaiveBayesModel`类没有被定义,因此需要先定义该类。可以使用如下代码进行定义:
```
class NaiveBayesModel:
def __init__(self, log_class_priors, log_likelihoods):
self.log_class_priors = log_class_priors
self.log_likelihoods = log_likelihoods
```
将其添加到代码中即可。
相关问题
def predict_from_naive_bayes_model(model, matrix): """Use a Naive Bayes model to compute predictions for a target matrix. This function should be able to predict on the models that fit_naive_bayes_model outputs. Args: model: A trained model from fit_naive_bayes_model matrix: A numpy array containing word counts Returns: A numpy array containg the predictions from the model """ # *** START CODE HERE *** log_probabilities = [] for i in range(model.num_classes): log_probabilities.append(np.sum(matrix * model.log_class_priors[i] + model.log_likelihoods[i])) return np.argmax(log_probabilities) # Return the class with the highest probability # *** END CODE HERE ***代码报错AttributeError: 'dict' object has no attribute 'log_class_priors'请帮我修改
根据报错信息,我们可以看出,`model` 参数传入的是一个字典,而字典没有 `log_class_priors` 属性。因此,我们需要修改这个函数,使其能够处理字典作为输入。具体的修改方法如下:
```python
def predict_from_naive_bayes_model(model, matrix):
"""Use a Naive Bayes model to compute predictions for a target matrix. This function should be able to predict on the models that fit_naive_bayes_model outputs.
Args:
model: A trained model from fit_naive_bayes_model
matrix: A numpy array containing word counts
Returns:
A numpy array containing the predictions from the model
"""
# *** START CODE HERE ***
log_probabilities = []
for i in range(model['num_classes']):
log_probabilities.append(np.sum(matrix * model['log_class_priors'][i] + model['log_likelihoods'][i]))
return np.argmax(log_probabilities) # Return the class with the highest probability
# *** END CODE HERE ***
```
在这个修改后的函数中,我们使用了 `model['log_class_priors']` 和 `model['log_likelihoods']` 来获取训练得到的朴素贝叶斯模型的参数,这些参数存储在字典 `model` 中。同时,我们也使用了 `model['num_classes']` 来获取模型中的类别数目。
阅读全文