Nataf 变换python代码

时间: 2023-12-16 11:05:59 浏览: 33
下面是一个示例代码,用于实现Nataf变换: ```python import numpy as np from scipy.stats import norm def nataf_transform(X, C): """ Nataf transformation of random variables X given correlation matrix C """ # Compute Cholesky decomposition of correlation matrix L = np.linalg.cholesky(C) # Compute transformed variables using inverse CDF of standard normal distribution Y = norm.cdf(np.dot(X, L)) # Compute Jacobian of transformation J = np.prod(norm.pdf(np.dot(X, L))) return Y, J ``` 其中,X是一个n维随机变量的向量,C是一个n×n的相关矩阵。函数的输出是一个n维向量Y,以及变换的Jacobian矩阵的行列式J。可以将输出的Y作为变换后的随机变量使用。
相关问题

nataf变换matlab代码

Nataf变换可以用来改进随机模拟方法,减少不确定因素带来的不良影响,由此可以提高数值分析的精确性和可靠性。在MATLAB环境中,Nataf变换可以通过以下代码实现: 1. 首先,定义要进行变换的随机变量和变量的相关系数矩阵: X = [x1; x2; x3]; % 随机变量 R = [1, 0.5, 0.3; 0.5, 1, 0.2; 0.3, 0.2, 1]; % 相关系数矩阵 2. 利用“chol”函数求得相关系数矩阵的Cholesky分解: L = chol(R, 'lower'); % R的下三角矩阵 3. 定义正态随机变量: Z = normrnd(0, 1, 3, 1); % 3个独立的标准正态随机变量 4. 计算变换后的随机变量: Y = mean(X) + L*Z; % Nataf变换得到的随机变量 5. 利用如下代码检查变换后的随机变量Y是否服从标准正态分布: pd = makedist('Normal', 'mu', 0, 'sigma', 1); % 标准正态分布 figure; histogram(Y, 'Normalization', 'pdf'); hold on; x = -4:0.1:4; plot(x, pdf(pd, x), 'LineWidth', 2); legend('变换后的分布', '标准正态分布'); title('Nataf变换后的随机变量分布图'); 通过以上MATLAB代码,我们就可以实现Nataf变换,将不同的随机变量转化为服从标准正态分布的变量,更好地模拟不确定性因素对于系统的影响。

Nataf 变换转换 matlab代码

以下是一个简单的MATLAB代码示例,用于执行Nataf变换转换: ```matlab % 假设有两个原始随机变量X和Y,它们具有相关性 mu = [0 0]; % 均值向量 sigma = [1 0.7; 0.7 1]; % 协方差矩阵 % 生成原始变量样本 n = 1000; % 样本数量 rng(0); % 设置随机数种子,以便结果可重现 r = mvnrnd(mu, sigma, n); % 计算相关系数矩阵 R = corrcoef(r); % 计算协方差矩阵的特征值和特征向量 [V, D] = eig(sigma); % 计算变换矩阵 T = V * sqrt(D); % 执行Nataf变换转换 z = r * T'; % 绘制转换后的变量的散点图 figure; scatter(z(:, 1), z(:, 2)); xlabel('Z1'); ylabel('Z2'); title('Nataf Transformed Variables'); % 计算转换后变量的相关系数矩阵 R_trans = corrcoef(z); ``` 请注意,这只是一个简单的示例代码,用于演示如何执行Nataf变换转换。在实际应用中,你可能需要根据你的特定需求进行修改和扩展。

相关推荐

最新推荐

recommend-type

关于__Federico Milano 的电力系统分析工具箱.zip

1.版本:matlab2014/2019a/2021a 2.附赠案例数据可直接运行matlab程序。 3.代码特点:参数化编程、参数可方便更改、代码编程思路清晰、注释明细。 4.适用对象:计算机,电子信息工程、数学等专业的大学生课程设计、期末大作业和毕业设计。
recommend-type

mlab-upenn 研究小组的心脏模型模拟.zip

1.版本:matlab2014/2019a/2021a 2.附赠案例数据可直接运行matlab程序。 3.代码特点:参数化编程、参数可方便更改、代码编程思路清晰、注释明细。 4.适用对象:计算机,电子信息工程、数学等专业的大学生课程设计、期末大作业和毕业设计。
recommend-type

混合图像创建大师matlab代码.zip

1.版本:matlab2014/2019a/2021a 2.附赠案例数据可直接运行matlab程序。 3.代码特点:参数化编程、参数可方便更改、代码编程思路清晰、注释明细。 4.适用对象:计算机,电子信息工程、数学等专业的大学生课程设计、期末大作业和毕业设计。
recommend-type

中序遍历二叉树-java版本

在Java中,实现二叉树的中序遍历同样可以通过递归来完成。中序遍历的顺序是:首先递归地中序遍历左子树,然后访问根节点,最后递归地中序遍历右子树。 在这段代码中,Node类定义了二叉树的节点,BinaryTree类包含一个指向根节点的指针和inOrder方法,用于递归地进行中序遍历。printInOrder方法调用inOrder方法并打印出遍历的结果。 在Main类中,我们创建了一个示例二叉树,并调用printInOrder方法来输出中序遍历的结果。输出应该是:4 2 5 1 3,这表示中序遍历的顺序是左子树(4),然后是根节点(2),接着是右子树的左子树(5),然后是右子树的根节点(1),最后是右子树的右子树(3)。
recommend-type

无头单向非循环链表的实现(SList.c)

无头单向非循环链表的实现(函数定义文件)
recommend-type

RTL8188FU-Linux-v5.7.4.2-36687.20200602.tar(20765).gz

REALTEK 8188FTV 8188eus 8188etv linux驱动程序稳定版本, 支持AP,STA 以及AP+STA 共存模式。 稳定支持linux4.0以上内核。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

:YOLO目标检测算法的挑战与机遇:数据质量、计算资源与算法优化,探索未来发展方向

![:YOLO目标检测算法的挑战与机遇:数据质量、计算资源与算法优化,探索未来发展方向](https://img-blog.csdnimg.cn/7e3d12895feb4651b9748135c91e0f1a.png?x-oss-process=image/watermark,type_ZHJvaWRzYW5zZmFsbGJhY2s,shadow_50,text_Q1NETiBA5rKJ6YaJ77yM5LqO6aOO5Lit,size_20,color_FFFFFF,t_70,g_se,x_16) # 1. YOLO目标检测算法简介 YOLO(You Only Look Once)是一种
recommend-type

def ObjFun(x,y,beta): # 目标函数 """ Logistic regression loss function :param beta: model parameter vector :param x: feature matrix :param y: label vector :return: loss value """ n = x.shape[0] p = x.shape[1] pred = 1 / (1 + np.exp(-np.dot(x, beta))) pred = np.clip(pred, 1e-15, 1 - 1e-15) # 将预测值限制在一个很小的区间内 ObjVal = -np.sum(y * np.log(pred) + (1 - y) * np.log(1 - pred)) / n return ObjVal

好的,根据上面的目标函数,我们可以推导出其对应的梯度向量函数,如下所示: def gradient(x, y, beta): """ Compute gradient of the logistic regression loss function :param beta: model parameter vector :param x: feature matrix :param y: label vector :return: gradient vector """ n = x.shape[0] pred = 1 /
recommend-type

c++校园超市商品信息管理系统课程设计说明书(含源代码) (2).pdf

校园超市商品信息管理系统课程设计旨在帮助学生深入理解程序设计的基础知识,同时锻炼他们的实际操作能力。通过设计和实现一个校园超市商品信息管理系统,学生掌握了如何利用计算机科学与技术知识解决实际问题的能力。在课程设计过程中,学生需要对超市商品和销售员的关系进行有效管理,使系统功能更全面、实用,从而提高用户体验和便利性。 学生在课程设计过程中展现了积极的学习态度和纪律,没有缺勤情况,演示过程流畅且作品具有很强的使用价值。设计报告完整详细,展现了对问题的深入思考和解决能力。在答辩环节中,学生能够自信地回答问题,展示出扎实的专业知识和逻辑思维能力。教师对学生的表现予以肯定,认为学生在课程设计中表现出色,值得称赞。 整个课程设计过程包括平时成绩、报告成绩和演示与答辩成绩三个部分,其中平时表现占比20%,报告成绩占比40%,演示与答辩成绩占比40%。通过这三个部分的综合评定,最终为学生总成绩提供参考。总评分以百分制计算,全面评估学生在课程设计中的各项表现,最终为学生提供综合评价和反馈意见。 通过校园超市商品信息管理系统课程设计,学生不仅提升了对程序设计基础知识的理解与应用能力,同时也增强了团队协作和沟通能力。这一过程旨在培养学生综合运用技术解决问题的能力,为其未来的专业发展打下坚实基础。学生在进行校园超市商品信息管理系统课程设计过程中,不仅获得了理论知识的提升,同时也锻炼了实践能力和创新思维,为其未来的职业发展奠定了坚实基础。 校园超市商品信息管理系统课程设计的目的在于促进学生对程序设计基础知识的深入理解与掌握,同时培养学生解决实际问题的能力。通过对系统功能和用户需求的全面考量,学生设计了一个实用、高效的校园超市商品信息管理系统,为用户提供了更便捷、更高效的管理和使用体验。 综上所述,校园超市商品信息管理系统课程设计是一项旨在提升学生综合能力和实践技能的重要教学活动。通过此次设计,学生不仅深化了对程序设计基础知识的理解,还培养了解决实际问题的能力和团队合作精神。这一过程将为学生未来的专业发展提供坚实基础,使其在实际工作中能够胜任更多挑战。