python实现二次罚函数法目标函数为: -x1*x2约束条件分别为:-x1-x2^2+1=<0,x1+x2>=0
时间: 2024-05-11 12:19:19 浏览: 99
实现二次罚函数法可以分为以下几个步骤:
1. 定义目标函数和约束条件函数
```python
def objective(x):
return -x[0]*x[1]
def constraint1(x):
return -x[0] - x[1]**2 + 1
def constraint2(x):
return x[0] + x[1]
```
2. 定义二次罚函数
```python
def penalty_func(x, penalty_coef):
return objective(x) + penalty_coef*(max(0, constraint1(x))**2 + max(0, constraint2(x))**2)
```
3. 实现二次罚函数法优化算法
```python
def quadratic_penalty_method(x0, penalty_coef, max_iter=1000, tol=1e-6):
x = x0
iter_count = 0
while iter_count < max_iter:
# 定义目标函数
func = lambda x: penalty_func(x, penalty_coef)
# 求解优化问题
res = minimize(func, x, method='BFGS')
# 判断是否满足收敛条件
if abs(func(x) - func(res.x)) < tol:
return res.x, func(res.x)
# 更新参数
x = res.x
penalty_coef *= 2
iter_count += 1
return x, func(x)
```
4. 进行测试
```python
x0 = [0, 0]
penalty_coef = 1
res = quadratic_penalty_method(x0, penalty_coef)
print(res)
```
完整代码如下:
```python
from scipy.optimize import minimize
def objective(x):
return -x[0]*x[1]
def constraint1(x):
return -x[0] - x[1]**2 + 1
def constraint2(x):
return x[0] + x[1]
def penalty_func(x, penalty_coef):
return objective(x) + penalty_coef*(max(0, constraint1(x))**2 + max(0, constraint2(x))**2)
def quadratic_penalty_method(x0, penalty_coef, max_iter=1000, tol=1e-6):
x = x0
iter_count = 0
while iter_count < max_iter:
# 定义目标函数
func = lambda x: penalty_func(x, penalty_coef)
# 求解优化问题
res = minimize(func, x, method='BFGS')
# 判断是否满足收敛条件
if abs(func(x) - func(res.x)) < tol:
return res.x, func(res.x)
# 更新参数
x = res.x
penalty_coef *= 2
iter_count += 1
return x, func(x)
x0 = [0, 0]
penalty_coef = 1
res = quadratic_penalty_method(x0, penalty_coef)
print(res)
```
阅读全文