data_transform = { "train": transforms.Compose([transforms.RandomResizedCrop(224), transforms.RandomHorizontalFlip(), transforms.ToTensor(), transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])]), "val": transforms.Compose([transforms.Resize(256), transforms.CenterCrop(224), transforms.ToTensor(), transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])])}
时间: 2024-02-14 21:20:50 浏览: 436
dataTransform
这是一段使用PyTorch中的transforms模块定义的数据预处理代码,用于对图像数据进行预处理。该段代码定义了两个数据处理管道,分别用于训练集和验证集数据的预处理。
训练集的预处理管道包括随机大小裁剪(RandomResizedCrop)、随机水平翻转(RandomHorizontalFlip)、将图像转换为Tensor格式(ToTensor)和对图像进行标准化(Normalize)。
验证集的预处理管道包括将图像大小调整为256像素(Resize)、将图像中心裁剪为224像素(CenterCrop)、将图像转换为Tensor格式(ToTensor)和对图像进行标准化(Normalize)。
数据预处理的目的在于提高模型的训练效果和泛化能力,常用的方法包括裁剪、翻转、缩放和标准化等。
阅读全文