生成EM算法python代码
时间: 2023-05-19 13:00:44 浏览: 105
以下是一个简单的生成EM算法的Python代码示例:
```
import numpy as np
def em_algorithm(data, num_clusters, num_iterations):
# 初始化参数
num_samples, num_features = data.shape
means = np.random.rand(num_clusters, num_features)
covariances = [np.eye(num_features)] * num_clusters
weights = np.ones(num_clusters) / num_clusters
# EM算法主循环
for i in range(num_iterations):
# E步骤:计算每个样本属于每个簇的概率
probabilities = np.zeros((num_samples, num_clusters))
for k in range(num_clusters):
probabilities[:, k] = weights[k] * multivariate_normal.pdf(data, means[k], covariances[k])
probabilities /= probabilities.sum(axis=1, keepdims=True)
# M步骤:更新参数
weights = probabilities.mean(axis=0)
means = np.dot(probabilities.T, data) / probabilities.sum(axis=0, keepdims=True).T
for k in range(num_clusters):
diff = data - means[k]
covariances[k] = np.dot(probabilities[:, k] * diff.T, diff) / probabilities[:, k].sum()
return means, covariances, weights
```
这个代码使用了多元高斯分布来建模每个簇,使用EM算法来估计模型参数。
阅读全文