Python normalization示例
时间: 2024-11-03 07:00:59 浏览: 11
在Python中,数据规范化(Normalization)是一种常见的预处理步骤,用于将不同范围的数据转换到统一的标准,以便于分析或模型训练。通常,我们会将其缩放到0-1之间或均值为0,标准差为1(Z-score标准化)。这里是一个简单的示例:
```python
import numpy as np
# 假设我们有一个数据集
data = [50, 100, 150, 200, 250]
# 计算最大值和最小值
min_val = min(data)
max_val = max(data)
# Z-score标准化
normalized_data = [(x - min_val) / (max_val - min_val) for x in data]
print("Original data:", data)
print("Normalized data:", normalized_data)
# 或者使用NumPy的zscore函数
normalized_data_np = np.array(data).reshape(- np.mean(normalized_data_np)) / np.std(normalized_data_np)
print("Normalized data with NumPy zscore:", normalized_data_np_zscore)
```
相关问题
batch normalization代码示例
好的,以下是一个简单的 batch normalization 的代码示例:
```python
import numpy as np
class BatchNorm:
def __init__(self, gamma, beta, eps=1e-5):
self.gamma = gamma
self.beta = beta
self.eps = eps
self.mean = None
self.var = None
self.batch_size = None
self.xc = None
self.std = None
def forward(self, x):
self.batch_size = x.shape[0]
self.mean = np.mean(x, axis=0)
self.xc = x - self.mean
self.var = np.var(x, axis=0)
self.std = np.sqrt(self.var + self.eps)
x_norm = self.xc / self.std
out = self.gamma * x_norm + self.beta
return out
def backward(self, dout):
dx_norm = dout * self.gamma
dxc = dx_norm / self.std
dstd = -np.sum(dx_norm * self.xc / (self.std * self.std), axis=0)
dvar = 0.5 * dstd / self.std
dsq = np.ones_like(dout) / self.batch_size * dvar
dxc += 2 * self.xc * dsq
dmu = -np.sum(dxc, axis=0)
dx = dxc + np.ones_like(dout) / self.batch_size * dmu
dgamma = np.sum(dout * (self.xc / self.std), axis=0)
dbeta = np.sum(dout, axis=0)
return dx, dgamma, dbeta
```
其中,gamma 和 beta 是可学习的参数,eps 是一个小常数,用于避免除以零的情况。
写一段Batch normalization 的python代码
示例:
import numpy as npdef batchnorm(X, gamma, beta, epsilon=1e-5):
# 计算均值
mu = np.mean(X, axis=0)
# 计算方差
var = np.var(X, axis=0)
# 计算X的标准差
std = np.sqrt(var + epsilon)
# 计算X的标准分布
z = (X - mu) / std
# 计算batch normalization
out = gamma * z + beta
return out
阅读全文