帮我用库函数写一下stm32串口接收16位数据
时间: 2023-03-27 14:02:31 浏览: 215
好的,可以使用HAL库函数中的UART_Receive函数来接收16位数据,具体代码如下:
uint16_t data;
HAL_UART_Receive(&huart1, (uint8_t*)&data, 2, HAL_MAX_DELAY);
其中,&huart1是串口的句柄,2表示接收的数据长度为2字节,HAL_MAX_DELAY表示等待时间为无限长。接收到的数据会存储在data变量中。
相关问题
stm32串口2接收数据代码,用自带的库函数写
好的,我可以为您提供一个基本的串口2接收数据的代码,使用STM32的HAL库函数:
```
#include "stm32f4xx_hal.h"
UART_HandleTypeDef huart2;
void USART2_IRQHandler(void)
{
HAL_UART_IRQHandler(&huart2);
}
void HAL_UART_RxCpltCallback(UART_HandleTypeDef *huart)
{
//接收到数据后的回调函数
//在这里处理接收到的数据
}
int main(void)
{
//启用串口2
__HAL_RCC_USART2_CLK_ENABLE();
//设置串口2的GPIO引脚
GPIO_InitTypeDef GPIO_InitStruct = {0};
GPIO_InitStruct.Pin = GPIO_PIN_2 | GPIO_PIN_3;
GPIO_InitStruct.Mode = GPIO_MODE_AF_PP;
GPIO_InitStruct.Pull = GPIO_PULLUP;
GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_VERY_HIGH;
GPIO_InitStruct.Alternate = GPIO_AF7_USART2;
HAL_GPIO_Init(GPIOA, &GPIO_InitStruct);
//设置串口2的参数
huart2.Instance = USART2;
huart2.Init.BaudRate = 115200;
huart2.Init.WordLength = UART_WORDLENGTH_8B;
huart2.Init.StopBits = UART_STOPBITS_1;
huart2.Init.Parity = UART_PARITY_NONE;
huart2.Init.Mode = UART_MODE_RX;
huart2.Init.HwFlowCtl = UART_HWCONTROL_NONE;
huart2.Init.OverSampling = UART_OVERSAMPLING_16;
HAL_UART_Init(&huart2);
//启用串口2接收中断
HAL_NVIC_SetPriority(USART2_IRQn, 0, 0);
HAL_NVIC_EnableIRQ(USART2_IRQn);
HAL_UART_Receive_IT(&huart2, &data, 1);
while(1)
{
//主循环中做其它事情
}
}
```
这是一个基本的串口接收代码,当接收到数据后,会自动调用回调函数 `HAL_UART_RxCpltCallback`,在这里可以处理接收到的数据。建议您根据具体需求进行修改。
用stm32zet6库函数写一个使用串口三通过hc08蓝牙模块发送数据和串口中断接收数据的程序
以下是使用STM32CubeMX和HAL库函数编写的基本代码,用于通过串口三发送数据和接收数据(使用串口中断)。在本例中,发送和接收的波特率均为9600。
首先,在STM32CubeMX中配置串口三和串口中断。在“Pinout & Configuration”选项卡中,单击MCU上的USART3,并将其配置为“Asynchronous”模式。在“Mode”选项卡中,将波特率设置为9600,并启用“Interrupt Mode”。在“NVIC Settings”选项卡中,启用USART3中断,并配置其优先级。
然后,生成代码并将其导入到您的开发环境中。在main.c中,添加以下代码:
```c
#include "stm32f4xx_hal.h"
#include <string.h>
UART_HandleTypeDef huart3;
void SystemClock_Config(void);
static void MX_GPIO_Init(void);
static void MX_USART3_UART_Init(void);
int main(void)
{
HAL_Init();
SystemClock_Config();
MX_GPIO_Init();
MX_USART3_UART_Init();
while (1)
{
char tx_buffer[20] = "Hello, Bluetooth!\r\n";
HAL_UART_Transmit(&huart3, (uint8_t*)tx_buffer, strlen(tx_buffer), 1000);
HAL_Delay(1000);
}
}
void HAL_UART_RxCpltCallback(UART_HandleTypeDef *huart)
{
if (huart == &huart3)
{
// handle received data here
}
}
void SystemClock_Config(void)
{
RCC_OscInitTypeDef RCC_OscInitStruct = {0};
RCC_ClkInitTypeDef RCC_ClkInitStruct = {0};
/** Configure the main internal regulator output voltage
*/
__HAL_RCC_PWR_CLK_ENABLE();
__HAL_PWR_VOLTAGESCALING_CONFIG(PWR_REGULATOR_VOLTAGE_SCALE1);
/** Initializes the RCC Oscillators according to the specified parameters
* in the RCC_OscInitTypeDef structure.
*/
RCC_OscInitStruct.OscillatorType = RCC_OSCILLATORTYPE_HSI;
RCC_OscInitStruct.HSIState = RCC_HSI_ON;
RCC_OscInitStruct.HSICalibrationValue = RCC_HSICALIBRATION_DEFAULT;
RCC_OscInitStruct.PLL.PLLState = RCC_PLL_NONE;
if (HAL_RCC_OscConfig(&RCC_OscInitStruct) != HAL_OK)
{
Error_Handler();
}
/** Initializes the CPU, AHB and APB buses clocks
*/
RCC_ClkInitStruct.ClockType = RCC_CLOCKTYPE_HCLK | RCC_CLOCKTYPE_SYSCLK
| RCC_CLOCKTYPE_PCLK1 | RCC_CLOCKTYPE_PCLK2;
RCC_ClkInitStruct.SYSCLKSource = RCC_SYSCLKSOURCE_HSI;
RCC_ClkInitStruct.AHBCLKDivider = RCC_SYSCLK_DIV1;
RCC_ClkInitStruct.APB1CLKDivider = RCC_HCLK_DIV1;
RCC_ClkInitStruct.APB2CLKDivider = RCC_HCLK_DIV1;
if (HAL_RCC_ClockConfig(&RCC_ClkInitStruct, FLASH_LATENCY_0) != HAL_OK)
{
Error_Handler();
}
}
static void MX_USART3_UART_Init(void)
{
huart3.Instance = USART3;
huart3.Init.BaudRate = 9600;
huart3.Init.WordLength = UART_WORDLENGTH_8B;
huart3.Init.StopBits = UART_STOPBITS_1;
huart3.Init.Parity = UART_PARITY_NONE;
huart3.Init.Mode = UART_MODE_TX_RX;
huart3.Init.HwFlowCtl = UART_HWCONTROL_NONE;
huart3.Init.OverSampling = UART_OVERSAMPLING_16;
if (HAL_UART_Init(&huart3) != HAL_OK)
{
Error_Handler();
}
HAL_UART_Receive_IT(&huart3, (uint8_t*)rx_buffer, 1);
}
static void MX_GPIO_Init(void)
{
GPIO_InitTypeDef GPIO_InitStruct = {0};
__HAL_RCC_GPIOC_CLK_ENABLE();
__HAL_RCC_GPIOB_CLK_ENABLE();
GPIO_InitStruct.Pin = GPIO_PIN_10;
GPIO_InitStruct.Mode = GPIO_MODE_AF_PP;
GPIO_InitStruct.Pull = GPIO_NOPULL;
GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_VERY_HIGH;
GPIO_InitStruct.Alternate = GPIO_AF7_USART3;
HAL_GPIO_Init(GPIOC, &GPIO_InitStruct);
GPIO_InitStruct.Pin = GPIO_PIN_11;
GPIO_InitStruct.Mode = GPIO_MODE_AF_PP;
GPIO_InitStruct.Pull = GPIO_NOPULL;
GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_VERY_HIGH;
GPIO_InitStruct.Alternate = GPIO_AF7_USART3;
HAL_GPIO_Init(GPIOC, &GPIO_InitStruct);
}
void Error_Handler(void)
{
while(1) {}
}
```
在此代码中,我们使用`HAL_UART_Transmit`函数发送数据,使用`HAL_UART_Receive_IT`函数启用中断接收,并在`HAL_UART_RxCpltCallback`函数中处理接收到的数据。
请注意,此代码仅用于演示目的,您需要根据您的具体需求进行修改和优化。
阅读全文