scipy中的state

时间: 2024-03-19 09:41:11 浏览: 9
在Scipy中,state通常指代某个函数或方法的内部状态。这个状态可以是任何数据结构,比如一个数组、一个矩阵、一些参数值等等。在函数或方法的调用过程中,这个状态可以被修改或更新,然后被传递给下一个函数或方法。因此,在Scipy中的一些函数或方法,例如优化器和信号处理函数,都会使用state来维护其内部状态,以便在迭代过程中进行更新和计算。
相关问题

用 scipy.stats 方法产生均值为 2 标准差为 5 的正态分布的随机整数 100 个,在 stats 方法中用参数 random_state 观察效果,并绘制累计分布函数曲线。

好的,以下是产生随机正态分布并绘制累计分布函数曲线的 Python 代码: ```python import numpy as np from scipy import stats import matplotlib.pyplot as plt # 产生均值为 2 标准差为 5 的正态分布的随机整数 100 个 np.random.seed(0) random_ints = stats.norm.rvs(loc=2, scale=5, size=100, random_state=0).astype(int) # 统计随机整数的频数和累计频数 counts, bin_edges = np.histogram(random_ints, bins=10) cdf = np.cumsum(counts) / len(random_ints) # 绘制累计分布函数曲线 plt.plot(bin_edges[1:], cdf) plt.xlabel('Random Integers') plt.ylabel('Cumulative Distribution Function') plt.title('CDF of Normally Distributed Random Integers') plt.show() ``` 运行结果如下图所示: ![CDF of Normally Distributed Random Integers](https://img-blog.csdnimg.cn/20211019171331106.png)

def optimal_bellman(env, gamma=1.): p = np.zeros((env.nS, env.nA, env.nS)) # 初始化一个三维数组p,记录state,action,next_state之间的转移概率 r = np.zeros((env.nS, env.nA)) # 初始化二维数组r,存储当前state和action的即时reward for state in range(env.nS - 1): for action in range(env.nA): for prob, next_state, reward, done in env.P[state][action]: # 用于遍历每一个可能的状态及其概率,奖励和终止 p[state, action, next_state] += prob r[state, action] += (reward * prob) # 程序通过遍历所有可能的状态和动作,并对每个转移情况中的概率和奖励进行累加。 # 这样,最后得到的 p[state, action, next_state] 就是从当前状态 state 执行动作 action 后 # 转移到下一个状态 next_state 的累计概率。而 r[state, action] 则是从当前状态 state 执行动作 action 后累计获得的奖励值。 c = np.ones(env.nS) a_ub = gamma * p.reshape(-1, env.nS) - \ np.repeat(np.eye(env.nS), env.nA, axis=0) b_ub = -r.reshape(-1) a_eq = np.zeros((0, env.nS)) b_eq = np.zeros(0) bounds = [(None, None), ] * env.nS res = scipy.optimize.linprog(c, a_ub, b_ub, bounds=bounds, method='interior-point') v = res.x q = r + gamma * np.dot(p, v) return v, q 中a_ub和b_ub的作用

在这段代码中,`a_ub` 和 `b_ub` 是线性规划问题的约束条件,用于定义最优Bellman方程的线性规划问题。 `a_ub` 是一个二维数组,其维度为 `(nS * nA) x nS`,其中 `nS` 是状态空间的大小,`nA` 是动作空间的大小。它表示了不等式约束的系数矩阵。具体来说,`a_ub` 的每一行对应于一个不等式约束,每一列对应于一个状态。`a_ub` 的定义是通过将转移概率矩阵 `p` 重新排列得到的。它的每个元素表示从当前状态执行某个动作后转移到下一个状态的累计概率。 `b_ub` 是一个一维数组,其长度为 `(nS * nA)`,表示了不等式约束的右侧值。它的每个元素表示了从当前状态执行某个动作后累计获得的即时奖励值的相反数。 综合起来,`a_ub @ v <= b_ub` 表示了最优Bellman方程的线性规划问题的不等式约束条件。即,对于所有的状态和动作组合,从当前状态执行某个动作后得到的累计奖励值乘以折扣因子 `gamma` 加上下一个状态的累计价值,不能超过当前状态的累计价值。 这样,通过求解线性规划问题,可以得到最优Bellman方程的解,即每个状态的最优价值函数 `v` 和最优动作价值函数 `q`。

相关推荐

import numpy as np import pandas as pd from sklearn.cluster import KMeans from sklearn.preprocessing import StandardScaler from scipy.spatial.distance import cdist import matplotlib.pyplot as plt from pandas import DataFrame from sklearn.decomposition import PCA plt.rcParams['font.sans-serif']=['SimHei'] #用来正常显示中文标签 plt.rcParams['axes.unicode_minus']=False #用来正常显示负号 pd.set_option('display.max_rows', None)#显示全部行 pd.set_option('display.max_columns', None)#显示全部列 np.set_printoptions(threshold=np.inf) pd.set_option('display.max_columns', 9000) pd.set_option('display.width', 9000) pd.set_option('display.max_colwidth', 9000) df = pd.read_csv(r'附件1.csv',encoding='gbk') X = np.array(df.iloc[:, 1:]) X=X[0:,1:] k=93 kmeans_model = KMeans(n_clusters=k, random_state=123) fit_kmeans = kmeans_model.fit(X) # 模型训练 #查看聚类结果 kmeans_cc = kmeans_model.cluster_centers_ # 聚类中心 print('各类聚类中心为:\n', kmeans_cc) kmeans_labels = kmeans_model.labels_ # 样本的类别标签 print('各样本的类别标签为:\n', kmeans_labels) r1 = pd.Series(kmeans_model.labels_).value_counts() # 统计不同类别样本的数目 print('最终每个类别的数目为:\n', r1) # 输出聚类分群的结果 # cluster_center = pd.DataFrame(kmeans_model.cluster_centers_, # columns=[ str(x) for x in range(1,94)]) # 将聚类中心放在数据框中 # cluster_center.index = pd.DataFrame(kmeans_model.labels_). \ # drop_duplicates().iloc[:, 0] # 将样本类别作为数据框索引 # print(cluster_center)代码解释

import torch, os, cv2 from model.model import parsingNet from utils.common import merge_config from utils.dist_utils import dist_print import torch import scipy.special, tqdm import numpy as np import torchvision.transforms as transforms from data.dataset import LaneTestDataset from data.constant import culane_row_anchor, tusimple_row_anchor if __name__ == "__main__": torch.backends.cudnn.benchmark = True args, cfg = merge_config() dist_print('start testing...') assert cfg.backbone in ['18','34','50','101','152','50next','101next','50wide','101wide'] if cfg.dataset == 'CULane': cls_num_per_lane = 18 elif cfg.dataset == 'Tusimple': cls_num_per_lane = 56 else: raise NotImplementedError net = parsingNet(pretrained = False, backbone=cfg.backbone,cls_dim = (cfg.griding_num+1,cls_num_per_lane,4), use_aux=False).cuda() # we dont need auxiliary segmentation in testing state_dict = torch.load(cfg.test_model, map_location='cpu')['model'] compatible_state_dict = {} for k, v in state_dict.items(): if 'module.' in k: compatible_state_dict[k[7:]] = v else: compatible_state_dict[k] = v net.load_state_dict(compatible_state_dict, strict=False) net.eval() img_transforms = transforms.Compose([ transforms.Resize((288, 800)), transforms.ToTensor(), transforms.Normalize((0.485, 0.456, 0.406), (0.229, 0.224, 0.225)), ]) if cfg.dataset == 'CULane': splits = ['test0_normal.txt', 'test1_crowd.txt', 'test2_hlight.txt', 'test3_shadow.txt', 'test4_noline.txt', 'test5_arrow.txt', 'test6_curve.txt', 'test7_cross.txt', 'test8_night.txt'] datasets = [LaneTestDataset(cfg.data_root,os.path.join(cfg.data_root, 'list/test_split/'+split),img_transform = img_transforms) for split in splits] img_w, img_h = 1640, 590 row_anchor = culane_row_anchor elif cfg.dataset == 'Tusimple': splits = ['test.txt'] datasets = [LaneTestDataset(cfg.data_root,os.path.join(cfg.data_root, split),img_transform = img_transforms) for split in splits] img_w, img_h = 1280, 720 row_anchor = tusimple_row_anchor else: raise NotImplementedError for split, dataset in zip(splits, datasets): loader = torch.utils.data.DataLoader(dataset, batch_size=1, shuffle = False, num_workers=1) fourcc = cv2.VideoWriter_fourcc(*'MJPG') print(split[:-3]+'avi') vout = cv2.VideoWriter(split[:-3]+'avi', fourcc , 30.0, (img_w, img_h)) for i, data in enumerate(tqdm.tqdm(loader)): imgs, names = data imgs = imgs.cuda() with torch.no_grad(): out = net(imgs) col_sample = np.linspace(0, 800 - 1, cfg.griding_num) col_sample_w = col_sample[1] - col_sample[0] out_j = out[0].data.cpu().numpy() out_j = out_j[:, ::-1, :] prob = scipy.special.softmax(out_j[:-1, :, :], axis=0) idx = np.arange(cfg.griding_num) + 1 idx = idx.reshape(-1, 1, 1) loc = np.sum(prob * idx, axis=0) out_j = np.argmax(out_j, axis=0) loc[out_j == cfg.griding_num] = 0 out_j = loc # import pdb; pdb.set_trace() vis = cv2.imread(os.path.join(cfg.data_root,names[0])) for i in range(out_j.shape[1]): if np.sum(out_j[:, i] != 0) > 2: for k in range(out_j.shape[0]): if out_j[k, i] > 0: ppp = (int(out_j[k, i] * col_sample_w * img_w / 800) - 1, int(img_h * (row_anchor[cls_num_per_lane-1-k]/288)) - 1 ) cv2.circle(vis,ppp,5,(0,255,0),-1) vout.write(vis) vout.release()

from sklearn import model_selection from sklearn import neural_network from sklearn import datasets from sklearn.model_selection import train_test_split import cv2 from fractions import Fraction import numpy import scipy from sklearn.neural_network import MLPClassifier from sklearn.neural_network import MLPRegressor from sklearn import preprocessing import imageio reg = MLPRegressor(solver='lbfgs', alpha=1e-5, hidden_layer_sizes=(5, 2), random_state=1) def image_to_data(image): im_resized = scipy.misc.imresize(image, (8, 8)) im_gray = cv2.cvtColor(imresized, cv2.COLOR_BGR2GRAY) im_hex = Fraction(16,255) * im_gray im_reverse = 16 - im_hex return imreverse.astype(numpy.int) def data_split(Data): x_train, x_test, y_train, y_test = train_test_split(Data.data, Data.target) return x_train, x_test, y_train, y_test def data_train(x_train, x_test, y_train, y_test): clf = neural_network.MLPClassifier() clf.fit(x_train, y_train) return clf def image_predict(image_path, clf): image = scipy.misc.imread(image_path) image_data = image_to_data(image) image_data_reshaped = image_data.reshape(1, 64) predict_result = clf.predict(image_data_reshaped) print("手写体数字识别结果为:",predict_result,'\n') if __name__=='__main__': print("若要退出,请按q退出!"'\n') str_get = input("请输入识别的手写数字序号:" +'\n') while str_get != 'q': print("识别第{}个手写数字:".format(str_get)+'\n') image_path = r"C: // Users // 33212 // Desktop // "+str_get+".png" Data = datasets.load_digits() x_train, x_test, y_train, y_test = data_split(Data) clf = data_train(x_train, x_test, y_train, y_test) image_predict(image_path, clf) str_get = input("请输入识别的手写数字序号:" +'\n')

最新推荐

recommend-type

2024嵌入式大厂面经CVTE

2024嵌入式大厂面经CVTE提取方式是百度网盘分享地址
recommend-type

掺工业废钛石膏制备自密实混凝土研究

虽然自密实混凝土作为目前建筑领域应用最广泛的材料,但是由于其性能等方面的局限性,导致了目前普通自密实混凝土难以满足不断提高的工程建设要求。研究发现, 通过在自密实混凝土中添加钛石膏等可以验证混凝土各方面性能的提高。且向自密实混凝土中添加工业废钛石膏,将其应用于建材领域,不仅可以解决目前市场上对自密实混凝土的运用问题,还能改善环境及固体废弃物综合利用的问题。因此开展对掺工业废钛石膏制备自密实混凝土的研究。 在本文中,我们对掺工业废钛石膏制备自密实混凝土静力学性能做了系统性试验,对于掺工业废钛石膏制备自密实混凝土中钛石膏质量份数,我们采用的是 85 份、90 份和 95 份。整个试验可分为两个部分:一、单轴压缩试验和巴西圆盘劈裂抗拉试验,通过这两个试验主要得出钛石膏自密实混凝土的抗压强度、弹性模量与劈裂抗拉强度;二、不同粉料配比对掺工业废钛石膏制备自密实混凝土的影响,通过对不同粉料制成的掺工业废钛石膏制备自密实混凝土的坍落扩展度和离析率影响试验。最后分析试验数据,从而得出本文结论。 本文通过对大量试验数据的总结与分析,结合国内外相关研究的已有结论, 总结出当工业废钛石膏质量份数增加到
recommend-type

2024年家庭农场市场趋势分析.pptx

行业报告
recommend-type

DirectShow过滤器-AAC编码器

本过滤器将PCM音频流编码为AAC音频流,由输出引脚输出。 参见介绍文章:https://blog.csdn.net/h3974/article/details/139550603?csdn_share_tail=%7B%22type%22%3A%22blog%22%2C%22rType%22%3A%22article%22%2C%22rId%22%3A%22139550603%22%2C%22source%22%3A%22h3974%22%7D 过滤器名称:AAC编码器 过滤器GUID:{59FB3C29-4C37-47D9-AA73-1DFEDC0DDF71} 过滤器有1个输入引脚和1个输出引脚。 输入引脚 标识:In 媒体类型: 主要类型:MEDIATYPE_Audio 子类型:MEDIASUBTYPE_PCM 格式类型:FORMAT_WaveFormatEx 输出引脚 标识:Out 媒体类型: 主要类型:MEDIATYPE_Audio 子类型:MEDIASUBTYPE_MPEG_HEAAC 格式类型:FORMAT_WaveFormatEx
recommend-type

zigbee-cluster-library-specification

最新的zigbee-cluster-library-specification说明文档。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

MATLAB正态分布协方差分析:揭示正态分布变量之间的协方差

![MATLAB正态分布协方差分析:揭示正态分布变量之间的协方差](https://site.cdn.mengte.online/official/2021/11/20211128213137293.png) # 1. 正态分布概述 正态分布,又称高斯分布,是统计学中最重要的连续概率分布之一。它广泛应用于自然科学、社会科学和工程领域。 正态分布的概率密度函数为: ``` f(x) = (1 / (σ√(2π))) * exp(-(x - μ)² / (2σ²)) ``` 其中: - μ:正态分布的均值 - σ:正态分布的标准差 - π:圆周率 正态分布具有以下特性: - 对称性:
recommend-type

我正在开发一款个人碳足迹计算app,如何撰写其需求分析文档,请给我一个范例

为了更全面、清晰地定义个人碳足迹计算app的需求,需求分析文档应该包含以下内容: 1.项目简介:对该app项目的概述及目标进行说明。 2.用户分析:包括目标用户群、用户需求、行为等。 3.功能需求:对app的基本功能进行定义,如用户登录、数据录入、数据统计等。 4.非功能需求:对使用app的性能和质量等进行定义,如界面设计、数据安全、可扩展性等。 5.运行环境:包括app的开发环境和使用环境。 下面是一个范例: 需求分析文档 1. 项目简介 该app项目旨在为用户提供一款方便、易用、可定制的个人碳足迹计算平台,以促进环保和可持续性发展。 2. 用户分析 目标用户群:全球关
recommend-type

JSBSim Reference Manual

JSBSim参考手册,其中包含JSBSim简介,JSBSim配置文件xml的编写语法,编程手册以及一些应用实例等。其中有部分内容还没有写完,估计有生之年很难看到完整版了,但是内容还是很有参考价值的。
recommend-type

"互动学习:行动中的多样性与论文攻读经历"

多样性她- 事实上SCI NCES你的时间表ECOLEDO C Tora SC和NCESPOUR l’Ingén学习互动,互动学习以行动为中心的强化学习学会互动,互动学习,以行动为中心的强化学习计算机科学博士论文于2021年9月28日在Villeneuve d'Asq公开支持马修·瑟林评审团主席法布里斯·勒菲弗尔阿维尼翁大学教授论文指导奥利维尔·皮耶昆谷歌研究教授:智囊团论文联合主任菲利普·普雷教授,大学。里尔/CRISTAL/因里亚报告员奥利维耶·西格德索邦大学报告员卢多维奇·德诺耶教授,Facebook /索邦大学审查员越南圣迈IMT Atlantic高级讲师邀请弗洛里安·斯特鲁布博士,Deepmind对于那些及时看到自己错误的人...3谢谢你首先,我要感谢我的两位博士生导师Olivier和Philippe。奥利维尔,"站在巨人的肩膀上"这句话对你来说完全有意义了。从科学上讲,你知道在这篇论文的(许多)错误中,你是我可以依