get_video_info(video_path)之后怎么获取video_path的地址

时间: 2024-09-21 08:08:22 浏览: 42
`get_video_info(video_path)`这个函数通常用于从视频文件路径中获取视频的相关信息,比如编码、分辨率、时长等。如果你想要直接获取`video_path`的地址,实际上它就是返回给你的参数本身,因为`video_path`就是一个字符串,表示视频文件的实际存储位置。 如果你需要验证这个路径是否有效或者获取更具体的路径细节(如绝对路径),你可以使用Python的os模块的一些方法,例如: ```python import os def get_video_info(video_path): # ... 获取视频信息 ... # 检查路径是否存在 if not os.path.exists(video_path): print("Video path does not exist.") else: # 获取绝对路径 absolute_path = os.path.abspath(video_path) print(f"Video path is: {absolute_path}") # 使用示例 info = get_video_info("/path/to/video.mp4") ``` 在这个例子中,`os.path.abspath()`会返回`video_path`的绝对路径。
相关问题

get_video_info(video_path)

`get_video_info(video_path)` 函数是一个假设存在的函数,它主要用于获取指定视频路径(video_path)的元信息或视频属性。这个函数可能会检查视频的编码格式、分辨率、帧率、总帧数等基本信息。在实际编程中,特别是在处理视频数据分析或预处理时,这样的函数非常有用,因为它可以帮助开发者了解视频的内容特征,以便于后续的操作。 例如,在Python中,可以使用如FFmpeg这样的库来实现这个功能: ```python from moviepy.editor import VideoFileClip def get_video_info(video_path): clip = VideoFileClip(video_path) info = { 'format': clip.format, 'fps': clip.fps, 'width': clip.size[0], 'height': clip.size[1], 'total_frames': int(clip.duration * clip.fps) } return info ```

get_video_info(video_path)怎么使用

`get_video_info(video_path)`是一个假设的函数,它用于获取视频的相关信息,通常这个函数需要一个参数`video_path`,即视频文件的路径。要使用这个函数,你需要按照以下步骤: 1. 确保已安装了适当的库,如OpenCV(cv2)或其他视频处理库,因为它们通常包含这样的函数。 2. 调用函数并传入视频的实际路径。例如: ```python from your_module import get_video_info # 替换 'path_to_your_video.mp4' 为你的视频文件的实际路径 video_info = get_video_info('path_to_your_video.mp4') ``` 3. 函数返回的`video_info`可能会包含视频的元数据,如分辨率、帧率、总时长等。你可以通过访问这些属性来查看视频的详细信息。 ```python print("Video Resolution:", video_info.resolution) print("Frame Rate:", video_info.frame_rate) print("Duration:", video_info.duration) ```
阅读全文

相关推荐

import subprocess import cv2 import numpy as np import time import calendar #从手机获取二进制图片 def get_app_img(): # 从ADB获取屏幕图像 try: output = subprocess.check_output('adb exec-out screencap -p', shell=True) # 处理 output 中的数据 except subprocess.CalledProcessError as e: print('Error:', e) except Exception as e: print('Unexpected error:', e) return output #获取每一张图片的三维数据 def get_imgdecdoe(): output = get_app_img() # print("------output-----{}".format(output)) # 将输出转换为图像 image1 = cv2.imdecode(np.fromstring(output, dtype='uint8'), cv2.IMREAD_COLOR) # print(image) # #缩小图片的大小 image = cv2.resize(image1, (int(1080 / 3), int(2340 / 3))) return image def app_video(): save_path=r"E:\myTool\appium_xiangmu\test_video" ts=calendar.timegm(time.gmtime()) videoname = str(ts)+ ".mp4" save_file_path = '{}\\{}'.format(save_path, videoname) #保存视频 fourcc = cv2.VideoWriter_fourcc(*'mp4v') # 不同视频编码对应不同视频格式(例:'I','4','2','0' 对应avi格式) video = cv2.VideoWriter(save_file_path, fourcc, 5, (int(1080/3),int(2340/3))) try: while True: image = get_imgdecdoe() # 显示图像 cv2.imshow('Screen', image) # 按下ESC键退出循环 if cv2.waitKey(1) == 27: break image=get_imgdecdoe() video.write(image) finally: video.release() #释放 print("________视频处理完毕_______:视频号显示:{}".format(videoname)) cv2.destroyAllWindows() if __name__ == '__main__': app_video(),缺少录制时用户的点击的提示怎么处理,有实例代码吗

import requests import urllib.request import os def quest_find(quest_url, awme_id): params = {"id": awme_id} respon = requests.get(quest_url, params=params).json() return respon["data"], respon["code"] def re_down(url,filename): try: urllib.request.urlretrieve(url,filename) except urllib.error.ContentTooShortError: print ('Network conditions is not good. Reloading...') re_down(url,filename) # 获取视频URL,并下载 if __name__ == '__main__': quest_url = "http://discover-rpc.cmm-crawler-intranet.k8s.limayao.com/play_url" save_path = "/home/algodev/sujunbin/whisper/test_model/video%s" %time if not os.path.exists(save_path): os.mkdir(save_path) awme_ids = ['7119114587735100687'] with open('id_time.txt','r') as file: for line in file.readlines(): line = line.split() id = line[0] time1 = int(line[1]) if time1<10000: time ='<10s' elif 10000<=time1<20000: time='10-20s' elif 20000<=time1<30000: time='20-30s' elif 30000<=time1<40000: time='30-40s' elif 40000<=time1<50000: time='40-50s' elif 50000<=time1<60000: time='50-60s' elif 60000<=time1<90000: time='60-90s' elif 90000<=time1<120000: time='90-120s' elif 120000<=time1<180000: time='120-180s' elif time1>=180000: time='>180s' save_path = "/home/algodev/sujunbin/whisper/test_model/video%s" %time if not os.path.exists(save_path): os.mkdir(save_path) data_json, code = quest_find(quest_url, id) play_url = data_json['play_url'] video_name = id + '.mp4' save_video_path = os.path.join(save_path, video_name) re_down(data_json['play_url'], save_video_path) print(save_video_path) for i in range(len(awme_ids)): data_json, code = quest_find(quest_url, awme_ids[i]) play_url = data_json['play_url'] video_name = awme_ids[i] + '.mp4' save_video_path = os.path.join(save_path, video_name) urllib.request.urlretrieve(data_json['play_url'], save_video_path) print(save_video_path) print("done!")这段代码有什么问题

import requests from lxml import etree import csv headers={ "user-agent": "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/112.0.0.0 Safari/537.36 Edg/112.0.1722.64" } url = 'https://www.bilibili.com/v/channel/17532487/?tab=featured' # headers如前 xpath_videoplay='//ul[@class="card-list"]/div/div[@class="video-card"]/div[@class="video-card__content"]/a/div[@class="video-card__info"]/span[@class="play-text"]/span[@class="count"]/text()' xpath_videolike='//ul[@class="card-list"]/div/div[@class="video-card"]/div[@class="video-card__content"]/a/div[@class="video-card__info"]/span[@class="like-text"]/span[@class="count"]/text()' xpath_videotime='//ul[@class="card-list"]/div/div[@class="video-card"]/div[@class="video-card__content"]/a/div[@class="video-card__info"]/span[@class="play-duraiton"]/text()' xpath_videoername='//ul[@class="card-list"]/div/div[@class="video-card"]/a/span[@class="up-name__text"]/text()' xpath_videoname='//ul[@class="card-list"]/div/div[@class="video-card"]/a[@class="video-name"]/text()' response = requests.get(url, headers=headers) response.encoding = 'utf8' dom = etree.HTML(response.text) videoplays=dom.xpath(xpath_videoplay) videolikes=dom.xpath(xpath_videolike) videotimes=dom.xpath(xpath_videotime) videoernames=dom.xpath(xpath_videoername) videonames=dom.xpath(xpath_videoname) data = [] for i in range(len(videoplays)): t = {} t['视频制作者']=videoernames[i] t['视频标题']=videonames[i] t['视频时长']=videotimes[i] t['视频播放量'] = videoplays[i] t['视频点赞数'] = videolikes[i] data.append(t) # for t in data: # print(t) # print(t.items()) # save_data(xpath_videoername, xpath_videoname,xpath_videotime, xpath_videoplay, xpath_videolike) # def save_data(xpath_videoername, xpath_videoname,xpath_videotime, xpath_videoplay, xpath_videolike)';' # with open('./video.csv', 'a+', encoding='utf-8-sig') as f; # video_info=f'{xpath_videoername},{xpath_videoname},{xpath_videotime},{xpath_videoplay},{xpath_videolike}\n' # f.write(video_info) file_path="D:/python/up主数据.csv" with open(file_path,"w",encoding="utf-8-sig",newline='') as f: fieldnames = list(t[0].keys()) f_csv=csv.DictWriter(f,fieldnames=fieldnames) f_csv.writeheader() for row in t: writer.writerow(row)

大家在看

recommend-type

基于CDMA-TDOA的室内超声波定位系统 (2012年)

针对国内外对室内定位技术中定位精度不高问题,提出一种基于CDMA( Code Division Multiple Access) - TDOA( Time Difference of Arrival)的室内超声波定位系统,并给出实时性差异等缺点,进行了其工作原理和超声波信号的分析。该系统基于射频和超声波传感器的固有性质,对超声波信号采用CDMA技术进行编码,以便在目标节点上能区分各个信标发来的超声波信号,并结合射频信号实现TDOA测距算法,最终实现三维定位。采用Matlab/Simulink模块对3个信标
recommend-type

如何降低开关电源纹波噪声

1、什么是纹波? 2、纹波的表示方法 3、纹波的测试 4、纹波噪声的抑制方法
recommend-type

西安石油大学2019-2023 计算机考研808数据结构真题卷

西安石油大学2019-2023 计算机考研808数据结构真题卷,希望能够帮助到大家
recommend-type

AWS(亚马逊)云解决方案架构师面试三面作业全英文作业PPT

笔者参加亚马逊面试三面的作业,希望大家参考,少走弯路。
recommend-type

python大作业基于python实现的心电检测源码+数据+详细注释.zip

python大作业基于python实现的心电检测源码+数据+详细注释.zip 【1】项目代码完整且功能都验证ok,确保稳定可靠运行后才上传。欢迎下载使用!在使用过程中,如有问题或建议,请及时私信沟通,帮助解答。 【2】项目主要针对各个计算机相关专业,包括计科、信息安全、数据科学与大数据技术、人工智能、通信、物联网等领域的在校学生、专业教师或企业员工使用。 【3】项目具有较高的学习借鉴价值,不仅适用于小白学习入门进阶。也可作为毕设项目、课程设计、大作业、初期项目立项演示等。 【4】如果基础还行,或热爱钻研,可基于此项目进行二次开发,DIY其他不同功能,欢迎交流学习。 【备注】 项目下载解压后,项目名字和项目路径不要用中文,否则可能会出现解析不了的错误,建议解压重命名为英文名字后再运行!有问题私信沟通,祝顺利! python大作业基于python实现的心电检测源码+数据+详细注释.zippython大作业基于python实现的心电检测源码+数据+详细注释.zippython大作业基于python实现的心电检测源码+数据+详细注释.zippython大作业基于python实现的心电检测源码+数据+详细注释.zippython大作业基于python实现的心电检测源码+数据+详细注释.zippython大作业基于python实现的心电检测源码+数据+详细注释.zippython大作业基于python实现的心电检测源码+数据+详细注释.zippython大作业基于python实现的心电检测源码+数据+详细注释.zippython大作业基于python实现的心电检测源码+数据+详细注释.zippython大作业基于python实现的心电检测源码+数据+详细注释.zippython大作业基于python实现的心电检测源码+数据+详细注释.zip python大作业基于python实现的心电检测源码+数据+详细注释.zip

最新推荐

recommend-type

实现简易html视频播放器的方法

这里,每个`.video-item`代表一个视频,`data-path`属性存储了视频文件的路径,便于JavaScript获取和播放。 接下来,我们需要使用JavaScript来处理视频切换。可以使用jQuery库简化DOM操作。在HTML文件中引入jQuery...
recommend-type

基于C语言课程设计学生成绩管理系统、详细文档+全部资料+高分项目.zip

【资源说明】 基于C语言课程设计学生成绩管理系统、详细文档+全部资料+高分项目.zip 【备注】 1、该项目是个人高分项目源码,已获导师指导认可通过,答辩评审分达到95分 2、该资源内项目代码都经过测试运行成功,功能ok的情况下才上传的,请放心下载使用! 3、本项目适合计算机相关专业(人工智能、通信工程、自动化、电子信息、物联网等)的在校学生、老师或者企业员工下载使用,也可作为毕业设计、课程设计、作业、项目初期立项演示等,当然也适合小白学习进阶。 4、如果基础还行,可以在此代码基础上进行修改,以实现其他功能,也可直接用于毕设、课设、作业等。 欢迎下载,沟通交流,互相学习,共同进步!
recommend-type

WildFly 8.x中Apache Camel结合REST和Swagger的演示

资源摘要信息:"CamelEE7RestSwagger:Camel on EE 7 with REST and Swagger Demo" 在深入分析这个资源之前,我们需要先了解几个关键的技术组件,它们是Apache Camel、WildFly、Java DSL、REST服务和Swagger。下面是这些知识点的详细解析: 1. Apache Camel框架: Apache Camel是一个开源的集成框架,它允许开发者采用企业集成模式(Enterprise Integration Patterns,EIP)来实现不同的系统、应用程序和语言之间的无缝集成。Camel基于路由和转换机制,提供了各种组件以支持不同类型的传输和协议,包括HTTP、JMS、TCP/IP等。 2. WildFly应用服务器: WildFly(以前称为JBoss AS)是一款开源的Java应用服务器,由Red Hat开发。它支持最新的Java EE(企业版Java)规范,是Java企业应用开发中的关键组件之一。WildFly提供了一个全面的Java EE平台,用于部署和管理企业级应用程序。 3. Java DSL(领域特定语言): Java DSL是一种专门针对特定领域设计的语言,它是用Java编写的小型语言,可以在Camel中用来定义路由规则。DSL可以提供更简单、更直观的语法来表达复杂的集成逻辑,它使开发者能够以一种更接近业务逻辑的方式来编写集成代码。 4. REST服务: REST(Representational State Transfer)是一种软件架构风格,用于网络上客户端和服务器之间的通信。在RESTful架构中,网络上的每个资源都被唯一标识,并且可以使用标准的HTTP方法(如GET、POST、PUT、DELETE等)进行操作。RESTful服务因其轻量级、易于理解和使用的特性,已经成为Web服务设计的主流风格。 5. Swagger: Swagger是一个开源的框架,它提供了一种标准的方式来设计、构建、记录和使用RESTful Web服务。Swagger允许开发者描述API的结构,这样就可以自动生成文档、客户端库和服务器存根。通过Swagger,可以清晰地了解API提供的功能和如何使用这些API,从而提高API的可用性和开发效率。 结合以上知识点,CamelEE7RestSwagger这个资源演示了如何在WildFly应用服务器上使用Apache Camel创建RESTful服务,并通过Swagger来记录和展示API信息。整个过程涉及以下几个技术步骤: - 首先,需要在WildFly上设置和配置Camel环境,确保Camel能够运行并且可以作为路由引擎来使用。 - 其次,通过Java DSL编写Camel路由,定义如何处理来自客户端的HTTP请求,并根据请求的不同执行相应的业务逻辑。 - 接下来,使用Swagger来记录和描述创建的REST API。这包括定义API的路径、支持的操作、请求参数和响应格式等。 - 最后,通过Swagger提供的工具生成API文档和客户端代码,以及服务器端的存根代码,从而使得开发者可以更加便捷地理解和使用这些RESTful服务。 这个资源的实践演示对于想要学习如何在Java EE平台上使用Camel集成框架,并且希望提供和记录REST服务的开发者来说是非常有价值的。通过这种方式,开发者可以更加快速和简单地创建和管理Web服务,同时也增强了API的可访问性和可维护性。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

【声子晶体模拟全能指南】:20年经验技术大佬带你从入门到精通

![【声子晶体模拟全能指南】:20年经验技术大佬带你从入门到精通](https://docs.lammps.org/_images/lammps-gui-main.png) # 摘要 声子晶体作为一种具有周期性结构的材料,在声学隐身、微波和红外领域具有广泛的应用潜力。本文从基础理论出发,深入探讨了声子晶体的概念、物理模型和声子带结构的理论解析,同时介绍了声子晶体的数值模拟方法,包括有限元方法(FEM)、离散元方法(DEM)和分子动力学(MD)。本文还提供了一套完整的声子晶体模拟实践指南,涵盖了模拟前的准备工作、详细的模拟步骤以及结果验证和案例分析。此外,文章探讨了声子晶体模拟的高级技巧和拓展
recommend-type

2024-07-27怎么用python转换成农历日期

在Python中,可以使用`lunarcalendar`库来将公历日期转换为农历日期。首先,你需要安装这个库,可以通过pip命令进行安装: ```bash pip install lunarcalendar ``` 安装完成后,你可以使用以下代码将公历日期转换为农历日期: ```python from lunarcalendar import Converter, Solar, Lunar, DateNotExist # 创建一个公历日期对象 solar_date = Solar(2024, 7, 27) # 将公历日期转换为农历日期 try: lunar_date = Co
recommend-type

FDFS客户端Python库1.2.6版本发布

资源摘要信息:"FastDFS是一个开源的轻量级分布式文件系统,它对文件进行管理,功能包括文件存储、文件同步、文件访问等,适用于大规模文件存储和高并发访问场景。FastDFS为互联网应用量身定制,充分考虑了冗余备份、负载均衡、线性扩容等机制,保证系统的高可用性和扩展性。 FastDFS 架构包含两个主要的角色:Tracker Server 和 Storage Server。Tracker Server 作用是负载均衡和调度,它接受客户端的请求,为客户端提供文件访问的路径。Storage Server 作用是文件存储,一个 Storage Server 中可以有多个存储路径,文件可以存储在不同的路径上。FastDFS 通过 Tracker Server 和 Storage Server 的配合,可以完成文件上传、下载、删除等操作。 Python 客户端库 fdfs-client-py 是为了解决 FastDFS 文件系统在 Python 环境下的使用。fdfs-client-py 使用了 Thrift 协议,提供了文件上传、下载、删除、查询等接口,使得开发者可以更容易地利用 FastDFS 文件系统进行开发。fdfs-client-py 通常作为 Python 应用程序的一个依赖包进行安装。 针对提供的压缩包文件名 fdfs-client-py-master,这很可能是一个开源项目库的名称。根据文件名和标签“fdfs”,我们可以推测该压缩包包含的是 FastDFS 的 Python 客户端库的源代码文件。这些文件可以用于构建、修改以及扩展 fdfs-client-py 功能以满足特定需求。 由于“标题”和“描述”均与“fdfs-client-py-master1.2.6.zip”有关,没有提供其它具体的信息,因此无法从标题和描述中提取更多的知识点。而压缩包文件名称列表中只有一个文件“fdfs-client-py-master”,这表明我们目前讨论的资源摘要信息是基于对 FastDFS 的 Python 客户端库的一般性了解,而非基于具体文件内容的分析。 根据标签“fdfs”,我们可以深入探讨 FastDFS 相关的概念和技术细节,例如: - FastDFS 的分布式架构设计 - 文件上传下载机制 - 文件同步机制 - 元数据管理 - Tracker Server 的工作原理 - Storage Server 的工作原理 - 容错和数据恢复机制 - 系统的扩展性和弹性伸缩 在实际使用中,开发者可以通过 fdfs-client-py 库来与 FastDFS 文件系统进行交互,利用其提供的 API 接口实现文件的存储、管理等功能,从而开发出高效、可靠的文件处理应用。开发者可以根据项目的实际需求,选择合适的 FastDFS 版本,并根据官方文档进行安装、配置及优化,确保系统稳定运行。 总的来说,fdfs-client-py 是 FastDFS 文件系统与 Python 应用之间的一座桥梁,它使得开发者能够更加方便地将 FastDFS 集成到基于 Python 开发的应用中,发挥出 FastDFS 在文件管理方面的优势。"
recommend-type

"互动学习:行动中的多样性与论文攻读经历"

多样性她- 事实上SCI NCES你的时间表ECOLEDO C Tora SC和NCESPOUR l’Ingén学习互动,互动学习以行动为中心的强化学习学会互动,互动学习,以行动为中心的强化学习计算机科学博士论文于2021年9月28日在Villeneuve d'Asq公开支持马修·瑟林评审团主席法布里斯·勒菲弗尔阿维尼翁大学教授论文指导奥利维尔·皮耶昆谷歌研究教授:智囊团论文联合主任菲利普·普雷教授,大学。里尔/CRISTAL/因里亚报告员奥利维耶·西格德索邦大学报告员卢多维奇·德诺耶教授,Facebook /索邦大学审查员越南圣迈IMT Atlantic高级讲师邀请弗洛里安·斯特鲁布博士,Deepmind对于那些及时看到自己错误的人...3谢谢你首先,我要感谢我的两位博士生导师Olivier和Philippe。奥利维尔,"站在巨人的肩膀上"这句话对你来说完全有意义了。从科学上讲,你知道在这篇论文的(许多)错误中,你是我可以依
recommend-type

传感器集成全攻略:ICM-42688-P运动设备应用详解

![传感器集成全攻略:ICM-42688-P运动设备应用详解](https://static.mianbaoban-assets.eet-china.com/xinyu-images/MBXY-CR-ba33fcfbde1d1207d7b8fe45b6ea58d0.png) # 摘要 ICM-42688-P传感器作为一种先进的惯性测量单元,广泛应用于多种运动设备中。本文首先介绍了ICM-42688-P传感器的基本概述和技术规格,然后深入探讨了其编程基础,包括软件接口、数据读取处理及校准测试。接着,本文详细分析了该传感器在嵌入式系统、运动控制和人机交互设备中的实践应用,并且探讨了高级功能开发,
recommend-type

matlab 中实现 astar

在MATLAB中,A*算法是一种用于求解最短路径问题的启发式搜索算法。它适用于带权重的图或网格,特别是当有大量潜在解决方案时,比如迷宫寻路问题。以下是使用MATLAB基本步骤来实现A*算法: 1. **数据结构准备**: - 创建一个二维数组表示地图,其中0代表可以通行的节点,其他值代表障碍物或边界。 - 定义一个队列(通常使用`prioritiesqueue`)来存储待探索的节点及其信息。 2. **初始化**: - 设定起始节点(start),目标节点(goal),以及每个节点的初始g值(从起点到该点的实际代价)和f值(g值加上估计的h值,即启发函数)。 3.