%matplotlib inline from sklearn.cluster import KMeans#导入sklearn中kmeans聚类包 import numpy as np from matplotlib import pyplot as plt import sklearn.datasets as datasets iris=datasets.load_iris() #1 查看iris包括哪些信息,比如数据,label等。将这些信息打印出来

时间: 2023-12-09 08:05:16 浏览: 34
可以使用以下代码查看iris包括的信息: ```python print("数据:\n", iris.data) print("标签:\n", iris.target) print("标签名字:\n", iris.target_names) print("数据描述:\n", iris.DESCR) print("特征名字:\n", iris.feature_names) ``` 其中,数据包括样本的特征值;标签包括每个样本的类别标签;标签名字包括每个类别的名称;数据描述包括数据集的描述信息;特征名字包括每个特征的名称。
相关问题

import numpy as np import matplotlib.pyplot as plt from sklearn.cluster import KMeans from sklearn.datasets import load_iris # 加载鸢尾花数据集 iris = load_iris() X = iris.data y = iris.target # K均值聚类 kmeans = KMeans(n_clusters=3, random_state=0).fit(X) # 打印聚类结果 print('kmeans.labels_:', kmeans.labels_) print('kmeans.cluster_centers_:', kmeans.cluster_centers_) # 可视化聚类效果 plt.figure(figsize=(8, 6)) plt.scatter(X[:, 0], X[:, 1], c=kmeans.labels_) plt.title('Clustering result') plt.show()分析一下这段代码以及运行代码后的结果

这段代码实现了使用K均值聚类对鸢尾花数据集进行聚类分析,并可视化聚类结果。具体过程如下: 1. 导入需要的模块,包括numpy、matplotlib.pyplot和sklearn.cluster中的KMeans类和sklearn.datasets中的load_iris函数。 2. 加载鸢尾花数据集,将数据集中的数据赋值给变量X,将数据集中的标签赋值给变量y。 3. 定义KMeans类的实例kmeans,指定聚类数为3,随机种子为0。 4. 使用.fit()方法对数据集进行聚类,得到聚类结果。 5. 打印聚类结果,包括每个样本所属的聚类标签和聚类中心点的坐标。 6. 可视化聚类结果,使用matplotlib.pyplot的scatter()函数,将数据集中的前两个特征作为x轴和y轴,将聚类标签作为点的颜色,显示聚类结果。 运行结果显示,数据集中的三个品种的鸢尾花被成功地分成了三个簇,并且聚类效果较好。

使用sklearn.cluster.KMeans对鸢尾花数据进行聚类

好的,让我们来进行鸢尾花数据的聚类。首先,我们需要导入需要的库和数据集: ```python import numpy as np import pandas as pd from sklearn.cluster import KMeans from sklearn.datasets import load_iris iris = load_iris() X = iris.data y = iris.target ``` 接下来,我们需要选择聚类的数量。在这里,我们选择3个聚类中心。然后,我们使用KMeans模型进行训练和预测: ```python kmeans = KMeans(n_clusters=3, random_state=42) y_pred = kmeans.fit_predict(X) ``` 最后,我们可以将聚类结果可视化: ```python import matplotlib.pyplot as plt plt.scatter(X[:, 0], X[:, 1], c=y_pred) plt.title("KMeans Clustering") plt.show() ``` 这里只使用了数据的前两个特征来可视化聚类结果,但是可以根据需要选择不同的特征进行可视化。完整代码如下: ```python import numpy as np import pandas as pd from sklearn.cluster import KMeans from sklearn.datasets import load_iris import matplotlib.pyplot as plt iris = load_iris() X = iris.data y = iris.target kmeans = KMeans(n_clusters=3, random_state=42) y_pred = kmeans.fit_predict(X) plt.scatter(X[:, 0], X[:, 1], c=y_pred) plt.title("KMeans Clustering") plt.show() ```

相关推荐

import numpy as np import matplotlib.pyplot as plt %matplotlib inline from sklearn.datasets import load_digits data, labels = load_digits(return_X_y=True) (n_samples, n_features), n_digits = data.shape, np.unique(labels).size print(f"# 类别数: {n_digits}; # 样本数: {n_samples}; # 特征数: {n_features}") print(data[:2]) from time import time from sklearn.pipeline import make_pipeline from sklearn.preprocessing import StandardScaler from sklearn.cluster import KMeans kmeans=KMeans(n_clusters=10, random_state=42) ### 创建管道并训练,记录训练时间 t0 = time() estimator = make_pipeline(StandardScaler(), kmeans).fit(data) fit_time = time() - t0 print("训练时间:", fit_time) ### 通过惯性(inertia)聚类的性能 print(estimator) print(estimator[-1].inertia_) result1={"fit-time":fit_time,"inertia:":estimator[-1].inertia_ } from sklearn.decomposition import PCA ### ??编程使用PCA分解,得到10个主成分,放到变量 components 中--------------------------- pca = PCA(n_components=10) components = pca.fit_transform(data) ###------------------------------------------------------------------------- ### 创建KMeas对象 kmeans=KMeans(n_clusters=10, init="k-means++", random_state=42) ### 创建管道并训练,记录训练时间 t0 = time() estimator = make_pipeline(StandardScaler(), kmeans).fit(data) fit_time = time() - t0 print("训练时间:", fit_time) ### 通过惯性(inertia)聚类的性能 print(estimator) print(estimator[-1].inertia_) result2={"fit-time":fit_time,"inertia:":estimator[-1].inertia_ } from sklearn.decomposition import PCA ### ??编程 选择保持 98%的信息的PCA模型,用名为pca的变量表示 ---------- pca = PCA(n_components=0.98) ###------------------------------------------------------------------- ###创建KMeas对象 kmeans=KMeans(n_clusters=10, random_state=42) ###??编程 创建一个 标准化+PCA降维+KMeas聚类的管道并训练,记录训练时间 t0 = time() estimator = make_pipeline(StandardScaler(), pca, kmeans).fit(data) ##增加pca预处理 fit_time = time() - t0 print("训练时间:", fit_time) ### 通过惯性(inertia)聚类的性能 print(estimator) print(estimator[-1].inertia_) result3={"fit-time":fit_time,"inertia:":estimator[-1].inertia_ }可以选择不同的KMeans的参数对digits进行聚类,比较实验结果,并选择一个针对此问题的最好模型

import numpy as np from sklearn.cluster import MiniBatchKMeans from sklearn.datasets import load_iris from sklearn import preprocessing import matplotlib.pyplot as plt from pylab import mpl from sklearn.cluster import KMeans from sklearn.metrics import silhouette_score from scipy.spatial.distance import cdist # 设置显示中文字体 mpl.rcParams["font.sans-serif"] = ["SimHei"] # 设置正常显示符号 mpl.rcParams["axes.unicode_minus"] = False np.random.seed(5) iris = load_iris() X = iris.data y = iris.target min_max_scaler = preprocessing.MinMaxScaler() X_minmax = min_max_scaler.fit_transform(X) batch_size = 15 num_cluster = 3 clf = MiniBatchKMeans(n_clusters=num_cluster, batch_size=batch_size, init='random') clf.fit(X_minmax) centers = clf.cluster_centers_ pre_clu = clf.labels_ vmarker = {0: '^', 1: 's', 2: 'D', } mValue = [vmarker[i] for i in pre_clu] for _marker, _x, _y in zip(mValue, X_minmax[:, 1], X_minmax[:, 2]): plt.scatter(_x, _y, marker=_marker,c='grey') plt.scatter(centers[:, 1], centers[:, 2], marker='*',s=200,c='black') plt.show() #手肘法则最佳k值 def sse_k(): K = range(1, 10) sse_result = [] for k in K: kmeans = KMeans(n_clusters=k) kmeans.fit(iris.data) sse_result.append(sum(np.min(cdist(iris.data, kmeans.cluster_centers_, 'euclidean'), axis=1)) / iris.data.shape[0]) plt.plot(K, sse_result, 'gx-') plt.xlabel('k') plt.ylabel(u'平均畸变程度') plt.title(u'肘部法则确定最佳的K值') plt.show() # 轮廓系统法最佳k值 def sc_k(): K = range(2, 10) score = [] for k in K: kmeans = KMeans(n_clusters=k) kmeans.fit(iris.data) score.append(silhouette_score(iris.data, kmeans.labels_, metric='euclidean')) plt.plot(K, score, 'r*-') plt.xlabel('k') plt.ylabel(u'轮廓系数') plt.title(u'轮廓系数确定最佳的K值') plt.show() sse_k() sc_k()

import time import numpy as np import matplotlib.pyplot as plt from sklearn.cluster import MiniBatchKMeans, KMeans from sklearn.metrics.pairwise import pairwise_distances_argmin from sklearn.datasets import make_blobs # Generate sample data np.random.seed(0) batch_size = 45 centers = [[1, 1], [-1, -1], [1, -1]] n_clusters = len(centers) X, labels_true = make_blobs(n_samples=3000, centers=centers, cluster_std=0.7) # Compute clustering with Means k_means = KMeans(init='k-means++', n_clusters=3, n_init=10) t0 = time.time() k_means.fit(X) t_batch = time.time() - t0 # Compute clustering with MiniBatchKMeans mbk = MiniBatchKMeans(init='k-means++', n_clusters=3, batch_size=batch_size, n_init=10, max_no_improvement=10, verbose=0) t0 = time.time() mbk.fit(X) t_mini_batch = time.time() - t0 # Plot result fig = plt.figure(figsize=(8, 3)) fig.subplots_adjust(left=0.02, right=0.98, bottom=0.05, top=0.9) colors = ['#4EACC5', '#FF9C34', '#4E9A06'] # We want to have the same colors for the same cluster from the # MiniBatchKMeans and the KMeans algorithm. Let's pair the cluster centers per # closest one. k_means_cluster_centers = k_means.cluster_centers_ order = pairwise_distances_argmin(k_means.cluster_centers_, mbk.cluster_centers_) mbk_means_cluster_centers = mbk.cluster_centers_[order] k_means_labels = pairwise_distances_argmin(X, k_means_cluster_centers) mbk_means_labels = pairwise_distances_argmin(X, mbk_means_cluster_centers) # KMeans for k, col in zip(range(n_clusters), colors): my_members = k_means_labels == k cluster_center = k_means_cluster_centers[k] plt.plot(X[my_members, 0], X[my_members, 1], 'w', markerfacecolor=col, marker='.') plt.plot(cluster_center[0], cluster_center[1], 'o', markerfacecolor=col, markeredgecolor='k', markersize=6) plt.title('KMeans') plt.xticks(()) plt.yticks(()) plt.show() 这段代码每一句在干什么

import random import numpy as np import matplotlib.pyplot as plt 生成随机坐标点 def generate_points(num_points): points = [] for i in range(num_points): x = random.uniform(-10, 10) y = random.uniform(-10, 10) points.append([x, y]) return points 计算欧几里得距离 def euclidean_distance(point1, point2): return np.sqrt(np.sum(np.square(np.array(point1) - np.array(point2)))) K-means算法实现 def kmeans(points, k, num_iterations=100): num_points = len(points) # 随机选择k个点作为初始聚类中心 centroids = random.sample(points, k) # 初始化聚类标签和距离 labels = np.zeros(num_points) distances = np.zeros((num_points, k)) for i in range(num_iterations): # 计算每个点到每个聚类中心的距离 for j in range(num_points): for l in range(k): distances[j][l] = euclidean_distance(points[j], centroids[l]) # 根据距离将点分配到最近的聚类中心 for j in range(num_points): labels[j] = np.argmin(distances[j]) # 更新聚类中心 for l in range(k): centroids[l] = np.mean([points[j] for j in range(num_points) if labels[j] == l], axis=0) return labels, centroids 生成坐标点 points = generate_points(100) 对点进行K-means聚类 k_values = [2, 3, 4] for k in k_values: labels, centroids = kmeans(points, k) # 绘制聚类结果 colors = [‘r’, ‘g’, ‘b’, ‘y’, ‘c’, ‘m’] for i in range(k): plt.scatter([points[j][0] for j in range(len(points)) if labels[j] == i], [points[j][1] for j in range(len(points)) if labels[j] == i], color=colors[i]) plt.scatter([centroid[0] for centroid in centroids], [centroid[1] for centroid in centroids], marker=‘x’, color=‘k’, s=100) plt.title(‘K-means clustering with k={}’.format(k)) plt.show()import numpy as np import pandas as pd import matplotlib.pyplot as plt from sklearn.cluster import KMeans from sklearn.datasets import load_iris 载入数据集 iris = load_iris() X = iris.data y = iris.target K-means聚类 kmeans = KMeans(n_clusters=3, random_state=0).fit(X) 可视化结果 plt.scatter(X[:, 0], X[:, 1], c=kmeans.labels_) plt.xlabel(‘Sepal length’) plt.ylabel(‘Sepal width’) plt.title(‘K-means clustering on iris dataset’) plt.show()对这个算法的结果用SSE,轮廓系数,方差比率准则,DBI几个指标分析

最新推荐

recommend-type

Java swing + socket + mysql 五子棋网络对战游戏FiveChess.zip

五子棋游戏想必大家都非常熟悉,游戏规则十分简单。游戏开始后,玩家在游戏设置中选择人机对战,则系统执黑棋,玩家自己执白棋。双方轮流下一棋,先将横、竖或斜线的5个或5个以上同色棋子连成不间断的一排者为胜。 【项目资源】:包含前端、后端、移动开发、操作系统、人工智能、物联网、信息化管理、数据库、硬件开发、大数据、课程资源、音视频、网站开发等各种技术项目的源码。包括STM32、ESP8266、PHP、QT、Linux、iOS、C++、Java、python、web、C#、EDA、proteus、RTOS等项目的源码。 【技术】 Java、Python、Node.js、Spring Boot、Django、Express、MySQL、PostgreSQL、MongoDB、React、Angular、Vue、Bootstrap、Material-UI、Redis、Docker、Kubernetes
recommend-type

纯C语言实现的控制台有禁手五子棋(带AI)Five-to-five-Renju.zip

五子棋游戏想必大家都非常熟悉,游戏规则十分简单。游戏开始后,玩家在游戏设置中选择人机对战,则系统执黑棋,玩家自己执白棋。双方轮流下一棋,先将横、竖或斜线的5个或5个以上同色棋子连成不间断的一排者为胜。 【项目资源】:包含前端、后端、移动开发、操作系统、人工智能、物联网、信息化管理、数据库、硬件开发、大数据、课程资源、音视频、网站开发等各种技术项目的源码。包括STM32、ESP8266、PHP、QT、Linux、iOS、C++、Java、python、web、C#、EDA、proteus、RTOS等项目的源码。 【技术】 Java、Python、Node.js、Spring Boot、Django、Express、MySQL、PostgreSQL、MongoDB、React、Angular、Vue、Bootstrap、Material-UI、Redis、Docker、Kubernetes
recommend-type

zigbee-cluster-library-specification

最新的zigbee-cluster-library-specification说明文档。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

实现实时数据湖架构:Kafka与Hive集成

![实现实时数据湖架构:Kafka与Hive集成](https://img-blog.csdnimg.cn/img_convert/10eb2e6972b3b6086286fc64c0b3ee41.jpeg) # 1. 实时数据湖架构概述** 实时数据湖是一种现代数据管理架构,它允许企业以低延迟的方式收集、存储和处理大量数据。与传统数据仓库不同,实时数据湖不依赖于预先定义的模式,而是采用灵活的架构,可以处理各种数据类型和格式。这种架构为企业提供了以下优势: - **实时洞察:**实时数据湖允许企业访问最新的数据,从而做出更明智的决策。 - **数据民主化:**实时数据湖使各种利益相关者都可
recommend-type

用matlab绘制高斯色噪声情况下的频率估计CRLB,其中w(n)是零均值高斯色噪声,w(n)=0.8*w(n-1)+e(n),e(n)服从零均值方差为se的高斯分布

以下是用matlab绘制高斯色噪声情况下频率估计CRLB的代码: ```matlab % 参数设置 N = 100; % 信号长度 se = 0.5; % 噪声方差 w = zeros(N,1); % 高斯色噪声 w(1) = randn(1)*sqrt(se); for n = 2:N w(n) = 0.8*w(n-1) + randn(1)*sqrt(se); end % 计算频率估计CRLB fs = 1; % 采样频率 df = 0.01; % 频率分辨率 f = 0:df:fs/2; % 频率范围 M = length(f); CRLB = zeros(M,1); for
recommend-type

JSBSim Reference Manual

JSBSim参考手册,其中包含JSBSim简介,JSBSim配置文件xml的编写语法,编程手册以及一些应用实例等。其中有部分内容还没有写完,估计有生之年很难看到完整版了,但是内容还是很有参考价值的。
recommend-type

"互动学习:行动中的多样性与论文攻读经历"

多样性她- 事实上SCI NCES你的时间表ECOLEDO C Tora SC和NCESPOUR l’Ingén学习互动,互动学习以行动为中心的强化学习学会互动,互动学习,以行动为中心的强化学习计算机科学博士论文于2021年9月28日在Villeneuve d'Asq公开支持马修·瑟林评审团主席法布里斯·勒菲弗尔阿维尼翁大学教授论文指导奥利维尔·皮耶昆谷歌研究教授:智囊团论文联合主任菲利普·普雷教授,大学。里尔/CRISTAL/因里亚报告员奥利维耶·西格德索邦大学报告员卢多维奇·德诺耶教授,Facebook /索邦大学审查员越南圣迈IMT Atlantic高级讲师邀请弗洛里安·斯特鲁布博士,Deepmind对于那些及时看到自己错误的人...3谢谢你首先,我要感谢我的两位博士生导师Olivier和Philippe。奥利维尔,"站在巨人的肩膀上"这句话对你来说完全有意义了。从科学上讲,你知道在这篇论文的(许多)错误中,你是我可以依
recommend-type

实现实时监控告警系统:Kafka与Grafana整合

![实现实时监控告警系统:Kafka与Grafana整合](https://imgconvert.csdnimg.cn/aHR0cHM6Ly9tbWJpei5xcGljLmNuL21tYml6X2pwZy9BVldpY3ladXVDbEZpY1pLWmw2bUVaWXFUcEdLT1VDdkxRSmQxZXB5R1lxaWNlUjA2c0hFek5Qc3FyRktudFF1VDMxQVl3QTRXV2lhSWFRMEFRc0I1cW1ZOGcvNjQw?x-oss-process=image/format,png) # 1.1 Kafka集群架构 Kafka集群由多个称为代理的服务器组成,这
recommend-type

python中从Excel中取的列没有了0

可能是因为Excel中的列被格式化为数字,而数字前导的0被省略了。可以在Excel中将列的格式更改为文本,这样就会保留数字前导的0。另外,在Python中读取Excel时,可以将列的数据类型指定为字符串,这样就可以保留数字前导的0。例如: ```python import pandas as pd # 读取Excel文件 df = pd.read_excel('data.xlsx', dtype={'列名': str}) # 输出列数据 print(df['列名']) ``` 其中,`dtype={'列名': str}`表示将列名为“列名”的列的数据类型指定为字符串。