imgs_root = "C:/Users/18842/Desktop/Resnet/data_set/position_photos" assert os.path.exists(imgs_root), f"file: '{imgs_root}' dose not exist."

时间: 2024-02-04 10:04:17 浏览: 22
这段代码首先定义了一个变量`imgs_root`,它存储了图像数据集的根目录路径,即`C:/Users/18842/Desktop/Resnet/data_set/position_photos`。这个路径需要根据实际情况进行修改,确保它指向了正确的数据集目录。 接下来,代码使用了一个`assert`语句来检查这个路径是否存在。`assert`语句用于检查某个条件是否为真,如果为假,则会抛出一个`AssertionError`异常,中断程序的执行。在这段代码中,如果路径不存在,则会抛出`AssertionError`异常,并且打印出错误信息,即`file: '{imgs_root}' dose not exist.`。 这个检查过程通常用于确保程序的输入数据是正确的,可以避免在后续的处理过程中出现一些无法预料的错误。如果你在调试程序时发现程序中断在了`assert`语句处,那么你需要检查一下数据集目录是否正确,并且确保程序有足够的权限来访问这个目录。
相关问题

# 将聚类结果可视化 plt.scatter(features[:, 0], features[:, 1], c=labels) plt.show() save_path = "D:/jk" if not os.path.exists(save_path): os.mkdir(save_path) # 将每个聚类结果单独保存到对应的文件夹中 for i in set(labels): class_path = os.path.join(save_path, str(i)) if not os.path.exists(class_path): os.mkdir(class_path) for j in range(len(labels)): if labels[j] == i: img_path = dataset.imgs[j][0] img_name = os.path.basename(img_path) save_name = os.path.join(class_path, img_name) shutil.copy(img_path, save_name),能换一种聚类方法吗,换成高斯混合模型聚类,将聚类的结果保存到这个路径下D:\jk

当然可以,你可以使用高斯混合模型聚类方法。下面是一个使用高斯混合模型聚类方法的示例代码,并将聚类结果保存到 "D:/jk" 路径下: ```python import os import shutil import numpy as np from sklearn.mixture import GaussianMixture # 加载数据 data = np.load("your_data.npy") # 创建高斯混合模型聚类器,假设聚成 3 类 gmm = GaussianMixture(n_components=3) # 拟合数据并预测聚类结果 labels = gmm.fit_predict(data) # 可视化聚类结果 import matplotlib.pyplot as plt plt.scatter(data[:, 0], data[:, 1], c=labels) plt.show() # 将每个聚类结果单独保存到对应的文件夹中 save_path = "D:/jk" if not os.path.exists(save_path): os.mkdir(save_path) for i in set(labels): class_path = os.path.join(save_path, str(i)) if not os.path.exists(class_path): os.mkdir(class_path) for j in range(len(labels)): if labels[j] == i: img_path = dataset.imgs[j][0] img_name = os.path.basename(img_path) save_name = os.path.join(class_path, img_name) shutil.copy(img_path, save_name) ``` 需要注意的是,高斯混合模型聚类方法需要先将数据标准化,否则可能会导致聚类效果不佳。另外,GMM聚类方法需要指定聚类的数量,本示例中假设聚成 3 类。

# Load the dataset dataset = ImageFolder("D:/wjd/2", transform=transform) dataloader = DataLoader(dataset, batch_size=32, shuffle=True) # Extract feature vectors features = [] with torch.no_grad(): for images, _ in dataloader: outputs = model(images) features.append(outputs) features = torch.cat(features, dim=0).numpy() # Perform clustering using GMM gmm = GaussianMixture(n_components=3, covariance_type='full') labels = gmm.fit_predict(features) # Visualize the clustering result plt.scatter(features[:, 0], features[:, 1], c=labels) plt.show() # Save the clustering result save_path = "D:/jk" if not os.path.exists(save_path): os.mkdir(save_path) for i in set(labels): class_path = os.path.join(save_path, str(i)) if not os.path.exists(class_path): os.mkdir(class_path) for j in range(len(labels)): if labels[j] == i: img_path = dataset.imgs[j][0] img_name = os.path.basename(img_path) save_name = os.path.join(class_path, img_name) shutil.copy(img_path, save_name),能把这段代码改进一下吗,自动确定n_components

当使用GMM进行聚类时,可以采用如下的方法自动确定n_components: 1. 使用贝叶斯信息准则(BIC)或赤池信息准则(AIC)来选择最佳的n_components。这些准则可用于衡量模型质量与复杂性之间的平衡,因此可以识别最佳的n_components。 2. 使用轮廓系数来选择最佳的n_components。轮廓系数是一种衡量聚类结果质量的指标,其值介于-1和1之间。较高的轮廓系数表示聚类结果更好。因此,可以使用不同的n_components进行聚类,并选择具有最高轮廓系数的n_components。 下面是一个改进后的代码示例,其中n_components使用BIC自动确定: ``` from sklearn.mixture import GaussianMixture from sklearn.decomposition import PCA from sklearn.metrics import silhouette_score, silhouette_samples # Load the dataset dataset = ImageFolder("D:/wjd/2", transform=transform) dataloader = DataLoader(dataset, batch_size=32, shuffle=True) # Extract feature vectors features = [] with torch.no_grad(): for images, _ in dataloader: outputs = model(images) features.append(outputs) features = torch.cat(features, dim=0).numpy() # Perform PCA for dimensionality reduction pca = PCA(n_components=0.9) features_reduced = pca.fit_transform(features) # Perform clustering using GMM with BIC n_components = range(1, 10) bic = [] for n in n_components: gmm = GaussianMixture(n_components=n, covariance_type='full') gmm.fit(features_reduced) bic.append(gmm.bic(features_reduced)) best_n_components = n_components[np.argmin(bic)] print("Best n_components:", best_n_components) gmm = GaussianMixture(n_components=best_n_components, covariance_type='full') labels = gmm.fit_predict(features_reduced) # Compute silhouette score for evaluation silhouette_avg = silhouette_score(features_reduced, labels) print("Silhouette score:", silhouette_avg) # Visualize the clustering result plt.scatter(features_reduced[:, 0], features_reduced[:, 1], c=labels) plt.show() # Save the clustering result save_path = "D:/jk" if not os.path.exists(save_path): os.mkdir(save_path) for i in set(labels): class_path = os.path.join(save_path, str(i)) if not os.path.exists(class_path): os.mkdir(class_path) for j in range(len(labels)): if labels[j] == i: img_path = dataset.imgs[j][0] img_name = os.path.basename(img_path) save_name = os.path.join(class_path, img_name) shutil.copy(img_path, save_name) ``` 在这个示例中,我们使用PCA对特征向量进行降维,并使用BIC自动确定最佳的n_components。然后,我们使用GMM进行聚类,并使用轮廓系数评估聚类结果的质量。在最后一步,我们将聚类结果保存到磁盘上。

相关推荐

给下面这段代码每行注释import os import json import torch from PIL import Image from torchvision import transforms from model import resnet34 def main(): device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu") data_transform = transforms.Compose( [transforms.Resize(256), transforms.CenterCrop(224), transforms.ToTensor(), transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])]) # load image # 指向需要遍历预测的图像文件夹 imgs_root = "../dataset/val" assert os.path.exists(imgs_root), f"file: '{imgs_root}' dose not exist." # 读取指定文件夹下所有jpg图像路径 img_path_list = [os.path.join(imgs_root, i) for i in os.listdir(imgs_root) if i.endswith(".jpg")] # read class_indict json_path = './class_indices.json' assert os.path.exists(json_path), f"file: '{json_path}' dose not exist." json_file = open(json_path, "r") class_indict = json.load(json_file) # create model model = resnet34(num_classes=16).to(device) # load model weights weights_path = "./newresNet34.pth" assert os.path.exists(weights_path), f"file: '{weights_path}' dose not exist." model.load_state_dict(torch.load(weights_path, map_location=device)) # prediction model.eval() batch_size = 8 # 每次预测时将多少张图片打包成一个batch with torch.no_grad(): for ids in range(0, len(img_path_list) // batch_size): img_list = [] for img_path in img_path_list[ids * batch_size: (ids + 1) * batch_size]: assert os.path.exists(img_path), f"file: '{img_path}' dose not exist." img = Image.open(img_path) img = data_transform(img) img_list.append(img) # batch img # 将img_list列表中的所有图像打包成一个batch batch_img = torch.stack(img_list, dim=0) # predict class output = model(batch_img.to(device)).cpu() predict = torch.softmax(output, dim=1) probs, classes = torch.max(predict, dim=1) for idx, (pro, cla) in enumerate(zip(probs, classes)): print("image: {} class: {} prob: {:.3}".format(img_path_list[ids * batch_size + idx], class_indict[str(cla.numpy())], pro.numpy())) if __name__ == '__main__': main()

将下面代码简洁化:def split_dataset(img_path, target_folder_path, output_path): filename = [] total_imgs = os.listdir(img_path) #for root, dirs, files in os.walk(img_path): for img in total_imgs: filename.append(img) np.random.shuffle(filename) train = filename[:int(len(filename) * 0.9)] test = filename[int(len(filename) * 0.9):] out_images = os.path.join(output_path, 'imgs') if not os.path.exists(out_images): os.makedirs(out_images) out_images_train = os.path.join(out_images, 'training') if not os.path.exists(out_images_train): os.makedirs(out_images_train) out_images_test = os.path.join(out_images, 'test') if not os.path.exists(out_images_test): os.makedirs(out_images_test) out_annotations = os.path.join(output_path, 'annotations') if not os.path.exists(out_annotations): os.makedirs(out_annotations) out_annotations_train = os.path.join(out_annotations, 'training') if not os.path.exists(out_annotations_train): os.makedirs(out_annotations_train) out_annotations_test = os.path.join(out_annotations, 'test') if not os.path.exists(out_annotations_test): os.makedirs(out_annotations_test) for i in train: print(os.path.join(img_path, i)) print(os.path.join(out_images_train, i)) shutil.copyfile(os.path.join(img_path, i), os.path.join(out_images_train, i)) annotations_name = "gt_" + i[:-3] + 'txt' shutil.copyfile(os.path.join(target_folder_path, annotations_name), os.path.join(out_annotations_train, annotations_name)) for i in test: shutil.copyfile(os.path.join(img_path, i), os.path.join(out_images_test, i)) annotations_name = "gt_" + i[:-3] + 'txt' shutil.copyfile(os.path.join(target_folder_path, annotations_name), os.path.join(out_annotations_test, annotations_name))

最新推荐

recommend-type

pre_o_1csdn63m9a1bs0e1rr51niuu33e.a

pre_o_1csdn63m9a1bs0e1rr51niuu33e.a
recommend-type

matlab建立计算力学课程的笔记和文件.zip

matlab建立计算力学课程的笔记和文件.zip
recommend-type

zigbee-cluster-library-specification

最新的zigbee-cluster-library-specification说明文档。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

实现实时数据湖架构:Kafka与Hive集成

![实现实时数据湖架构:Kafka与Hive集成](https://img-blog.csdnimg.cn/img_convert/10eb2e6972b3b6086286fc64c0b3ee41.jpeg) # 1. 实时数据湖架构概述** 实时数据湖是一种现代数据管理架构,它允许企业以低延迟的方式收集、存储和处理大量数据。与传统数据仓库不同,实时数据湖不依赖于预先定义的模式,而是采用灵活的架构,可以处理各种数据类型和格式。这种架构为企业提供了以下优势: - **实时洞察:**实时数据湖允许企业访问最新的数据,从而做出更明智的决策。 - **数据民主化:**实时数据湖使各种利益相关者都可
recommend-type

2. 通过python绘制y=e-xsin(2πx)图像

可以使用matplotlib库来绘制这个函数的图像。以下是一段示例代码: ```python import numpy as np import matplotlib.pyplot as plt def func(x): return np.exp(-x) * np.sin(2 * np.pi * x) x = np.linspace(0, 5, 500) y = func(x) plt.plot(x, y) plt.xlabel('x') plt.ylabel('y') plt.title('y = e^{-x} sin(2πx)') plt.show() ``` 运行这段
recommend-type

JSBSim Reference Manual

JSBSim参考手册,其中包含JSBSim简介,JSBSim配置文件xml的编写语法,编程手册以及一些应用实例等。其中有部分内容还没有写完,估计有生之年很难看到完整版了,但是内容还是很有参考价值的。
recommend-type

"互动学习:行动中的多样性与论文攻读经历"

多样性她- 事实上SCI NCES你的时间表ECOLEDO C Tora SC和NCESPOUR l’Ingén学习互动,互动学习以行动为中心的强化学习学会互动,互动学习,以行动为中心的强化学习计算机科学博士论文于2021年9月28日在Villeneuve d'Asq公开支持马修·瑟林评审团主席法布里斯·勒菲弗尔阿维尼翁大学教授论文指导奥利维尔·皮耶昆谷歌研究教授:智囊团论文联合主任菲利普·普雷教授,大学。里尔/CRISTAL/因里亚报告员奥利维耶·西格德索邦大学报告员卢多维奇·德诺耶教授,Facebook /索邦大学审查员越南圣迈IMT Atlantic高级讲师邀请弗洛里安·斯特鲁布博士,Deepmind对于那些及时看到自己错误的人...3谢谢你首先,我要感谢我的两位博士生导师Olivier和Philippe。奥利维尔,"站在巨人的肩膀上"这句话对你来说完全有意义了。从科学上讲,你知道在这篇论文的(许多)错误中,你是我可以依
recommend-type

实现实时监控告警系统:Kafka与Grafana整合

![实现实时监控告警系统:Kafka与Grafana整合](https://imgconvert.csdnimg.cn/aHR0cHM6Ly9tbWJpei5xcGljLmNuL21tYml6X2pwZy9BVldpY3ladXVDbEZpY1pLWmw2bUVaWXFUcEdLT1VDdkxRSmQxZXB5R1lxaWNlUjA2c0hFek5Qc3FyRktudFF1VDMxQVl3QTRXV2lhSWFRMEFRc0I1cW1ZOGcvNjQw?x-oss-process=image/format,png) # 1.1 Kafka集群架构 Kafka集群由多个称为代理的服务器组成,这
recommend-type

导入numpy库,创建两个包含9个随机数的3*3的矩阵,将两个矩阵分别打印出来,计算两个数组的点积并打印出来。(random.randn()、dot()函数)

可以的,以下是代码实现: ```python import numpy as np # 创建两个包含9个随机数的3*3的矩阵 matrix1 = np.random.randn(3, 3) matrix2 = np.random.randn(3, 3) # 打印两个矩阵 print("Matrix 1:\n", matrix1) print("Matrix 2:\n", matrix2) # 计算两个数组的点积并打印出来 dot_product = np.dot(matrix1, matrix2) print("Dot product:\n", dot_product) ``` 希望