lags=9 ncols=3 nrows=int(np.ceil(lags/ncols)) fig, axes = plt.subplots(ncols=ncols, nrows=nrows, figsize=(4*ncols, 4*nrows))
时间: 2023-05-20 20:07:08 浏览: 151
这是一段 Python 代码,用于创建一个包含多个子图的图形。其中,lags、ncols 和 nrows 都是变量,分别表示子图的数量、列数和行数。fig 和 axes 是 matplotlib 库中的对象,用于创建和管理图形和子图。这段代码的作用是创建一个包含 ncols 列、nrows 行的子图矩阵,每个子图的大小为 4*ncols x 4*nrows。
相关问题
# 得到模型的预测值 forecast = stepwise_model.predict_in_sample() # 计算标准化残差 standardized_resid = (model_resid - forecast) / AGresult.conditional_volatility resid_lb = acorr_ljungbox(standardized_resid, lags=10) # 残差序列的自相关图和偏自相关图 fig, ax = plt.subplots(nrows=2, figsize=(10, 8)) fig.subplots_adjust(hspace=0.5) ax[0].plot(resid_lb) ax[0].set_title('Residuals of ARIMA-GARCH Model') ax[1] = plot_acf(resid_lb, ax=ax[1], lags=10) plt.show()问题在哪怎么改
根据你提供的代码和错误信息,可以看出问题出在这段代码中:
```
ax[0].plot(resid_lb)
ax[0].set_title('Residuals of ARIMA-GARCH Model')
ax[1] = plot_acf(resid_lb, ax=ax[1], lags=10)
```
其中 `resid_lb` 是使用 `acorr_ljungbox` 函数计算的残差序列的统计量,但是这里的 `plot_acf` 函数需要的是一个时间序列的数据,因此需要把 `resid_lb` 转换成一个时间序列的数据。
可以尝试把 `resid_lb` 替换为 `standardized_resid`,即:
```
ax[0].plot(standardized_resid)
ax[0].set_title('Residuals of ARIMA-GARCH Model')
ax[1] = plot_acf(standardized_resid, ax=ax[1], lags=10)
```
这样就可以把标准化残差作为时间序列数据进行自相关图和偏自相关图的绘制了。
excelFile = 'brownian.csv' #读取数据,指定日期列为指标,Pandas自动将“日期”列识别为Datetime格式 data = pd.read_csv(excelFile) fig = plt.figure(figsize=(12,8)) ax1=fig.add_subplot(211) fig = sm.graphics.tsa.plot_acf(data["close"],lags=49,title='',ax=ax1) plt.tick_params(labelsize=17) ax2 = fig.add_subplot(212) fig = sm.graphics.tsa.plot_pacf(data["close"],lags=49,title='',ax=ax2) plt.tick_params(labelsize=17) plt.show() exit()
这段代码是用来读取名为'brownian.csv'的Excel文件中的数据,并使用Pandas库将日期列识别为Datetime格式。然后,它使用StatsModels库中的函数来绘制自相关性(ACF)和偏自相关性(PACF)图。最后,通过Matplotlib库将图形显示出来。最后一行的exit()函数是用来退出程序的。
阅读全文