y.plot(ax=ts_ax) ts_ax.set_title(title) y.plot(ax=hist_ax, kind='hist', bins=25) hist_ax.set_title('Histogram') smt.graphics.plot_acf(y, lags=lags, ax=acf_ax) smt.graphics.plot_pacf(y, lags=lags, ax=pacf_ax) [ax.set_xlim(0) for ax in [acf_ax, pacf_ax]] sns.despine() plt.tight_layout() return ts_ax, acf_ax, pacf_ax
时间: 2023-05-20 13:07:12 浏览: 183
plot_cv_predict.zip_cross_val_predict_plot(cv._predict-python_预测
5星 · 资源好评率100%
这段代码是用于时间序列分析的,它会生成一个时间序列的图表,包括原始数据的折线图、直方图、自相关图和偏自相关图。其中,y.plot(ax=ts_ax)是用于绘制原始数据的折线图,ts_ax.set_title(title)是设置折线图的标题,y.plot(ax=hist_ax, kind='hist', bins=25)是用于绘制直方图,hist_ax.set_title('Histogram')是设置直方图的标题,smt.graphics.plot_acf(y, lags=lags, ax=acf_ax)和smt.graphics.plot_pacf(y, lags=lags, ax=pacf_ax)分别是用于绘制自相关图和偏自相关图,[ax.set_xlim(0) for ax in [acf_ax, pacf_ax]]是设置自相关图和偏自相关图的x轴范围,sns.despine()是用于去除图表的边框,plt.tight_layout()是用于调整图表的布局。最后,函数会返回折线图、自相关图和偏自相关图的轴对象。
阅读全文