帮我润色论文。In this paper, we propose a balancing training method to address problems in imbalanced data learning. To this end, we derive a new loss used in the balancing training phase that alleviates the influence of samples that cause an overfitted decision boundary. The proposed loss efficiently improves the performance of any type of imbalance learning methods. In experiments on multiple benchmark data sets, we demonstrate the validity of our method and reveal that the proposed loss outperforms the state-of-the-art cost-sensitive loss methods. Furthermore, since our loss is not restricted to a specific task, model, or training method, it can be easily used in combination with other recent resampling, meta-learning, and cost-sensitive learning methods for class-imbalance problems. Our code is made available at https://github.com/pseulki/IB-Loss.
时间: 2023-02-24 18:02:14 浏览: 395
在本文中,我们提出了一种平衡训练方法,以解决不平衡数据学习中的问题。为此,我们在平衡训练阶段推导出一种新的损失,以减少导致过度拟合决策边界的样本的影响。所提出的损失有效提高了任何类型的不平衡学习方法的性能。在多个基准数据集的实验中,我们证明了我们的方法的有效性,并发现所提出的损失优于最先进的成本敏感损失方法。此外,由于我们的损失不受特定任务、模型或训练方法的限制,它可以轻松与其他最近的重采样、元学习和成本敏感学习方法结合使用,以解决类不平衡问题。我们的代码可在 https://github.com/pseulki/IB-Loss 获得。
相关问题
The human visual cortex is biased towards shape components while CNNs produce texture biased features. This fact may explain why the performance of CNN significantly degrades with low-labeled input data scenarios. In this paper, we propose a frequency re-calibration U-Net (FRCU-Net) for medical image segmentation. Representing an object in terms of frequency may reduce the effect of texture bias, resulting in better generalization for a low data regime. To do so, we apply the Laplacian pyramid in the bottleneck layer of the U-shaped structure. The Laplacian pyramid represents the object proposal in different frequency domains, where the high frequencies are responsible for the texture information and lower frequencies might be related to the shape. Adaptively re-calibrating these frequency representations can produce a more discriminative representation for describing the object of interest. To this end, we first propose to use a channel-wise attention mechanism to capture the relationship between the channels of a set of feature maps in one layer of the frequency pyramid. Second, the extracted features of each level of the pyramid are then combined through a non-linear function based on their impact on the final segmentation output. The proposed FRCU-Net is evaluated on five datasets ISIC 2017, ISIC 2018, the PH2, lung segmentation, and SegPC 2021 challenge datasets and compared to existing alternatives, achieving state-of-the-art results.请详细介绍这段话中的技术点和实现方式
这段话主要介绍了一种针对医学图像分割的新型网络结构——频率重新校准U-Net(FRCU-Net)。该网络结构的核心思想是将物体表示为频率,在低数据情况下降低纹理偏差的影响,从而获得更好的泛化性能。具体实现方式包括以下技术点:
1. 使用Laplacian金字塔将物体表示在不同的频率域中,其中高频率负责纹理信息,而较低的频率可能与物体的形状相关。
2. 通过自适应重新校准这些频率表示,以产生更具有区分性的物体表示。为此,首先提出使用通道注意力机制来捕捉一个特征图集合中各通道之间的关系,然后通过一个非线性函数将金字塔各层的特征提取结果组合起来,以得到最终的分割输出。
3. 在ISIC 2017、ISIC 2018、PH2、肺分割和SegPC 2021数据集上对FRCU-Net进行了评估,并与现有的替代方案进行了比较,取得了最先进的结果。
综上所述,FRCU-Net通过将物体表示为频率,以及使用自适应的频率重新校准和通道注意力机制,实现了对低数据情况下医学图像分割的有效处理。
The major contributions of this paper are summarized as follows: . We investigate a new automotive architecture and implementation method. We propose an extended SAE (Society of Automotive Engineer) Benchmark and the use of DDS middleware as an alternative for the existing architecture. . We detail the implementation of the electronic stability unit based on the extended SAE benchmark. . We propose a new design of the DDS based on the MBD approach. Thus, the implementation of the application and the new DDS block are realized under SIMULINK. We intend to improve DDS's programming approach, facilitate con¯guring and generation of DDS description and take into account the real-time network drivers. . In order to validate our DDS implementation and highlight its contributions in the context of hard real-time automotive systems, we detail latency computation for automotive networks, and we present the implemented algorithm to calculate the Worst Case Response Time (WCRT). We prove that DDS qualities of service on the top of the SAE vehicle application are respected. We also give a comparison of system performance using real time networks FlexRay and Ethernet.
本文的主要贡献总结如下:
1. 我们研究了一种新的汽车架构和实现方法。我们提出了扩展的SAE(汽车工程师协会)基准以及将DDS中间件作为现有架构的替代方案。
2. 我们详细介绍了基于扩展SAE基准的电子稳定单元的实现。
3. 我们提出了基于MBD方法的DDS的新设计。因此,应用程序的实现和新的DDS块在SIMULINK下完成。我们旨在改进DDS的编程方法,简化DDS描述的配置和生成,并考虑实时网络驱动程序。
4. 为了验证我们的DDS实现并突出其在硬实时汽车系统环境中的贡献,我们详细说明了汽车网络的延迟计算,并介绍了计算最坏情况响应时间(WCRT)的实现算法。我们证明了DDS在SAE车辆应用程序之上的服务质量得到了满足。我们还通过使用实时网络FlexRay和以太网对系统性能进行了比较。
阅读全文