请运行这段代码并且对结果进行描述性统计分析data = pd.read_csv("C:\\Users\\flx12\\Desktop\\大三下\\数据挖掘\\第二次上机作业\\Train.csv") import seaborn as sns columns = data.columns[1:-1] for col in columns: plt.figure() sns.histplot(data[col], bins=50, kde=True, color='skyblue', alpha=0.7, edgecolor='white') plt.title(col) plt.xlabel("Value") plt.ylabel("Frequency")
时间: 2023-07-21 19:46:15 浏览: 170
好的,针对你提供的代码,可以进行以下的描述性统计分析:
1. 首先,代码通过pandas库中的`read_csv()`函数将一个csv文件读入为一个数据框`data`。
2. 然后,代码使用`data.columns`获取数据框中的列名,`columns = data.columns[1:-1]`将所有的特征列名(第2列到倒数第2列)存储到一个列表中。
3. 对于每个特征列,代码使用seaborn库中的`histplot()`函数绘制直方图,并使用`bins=50`指定分组数为50,`kde=True`指定绘制核密度估计曲线,`color='skyblue'`指定直方图颜色,`alpha=0.7`指定透明度,`edgecolor='white'`指定边缘颜色。
4. 最后,代码为每个特征列的图形添加一个标题、X轴和Y轴标签。
通过观察直方图,可以得出以下的描述性统计信息:
1. 数据的分布形态:可以通过观察直方图的形状来判断数据的分布形态。如果直方图呈现对称性,说明数据可能符合正态分布;如果直方图呈现偏态,说明数据可能存在一些异常值或者偏离正常范围。
2. 数据的中心趋势:可以通过观察直方图的峰值来判断数据的中心趋势。如果峰值在左侧,说明数据可能存在左偏态;如果峰值在右侧,说明数据可能存在右偏态;如果峰值在中间,说明数据可能呈现均匀分布。此外,也可以通过均值、中位数和众数等指标来描述数据的中心趋势。
3. 数据的离散程度:可以通过观察直方图的分散程度来判断数据的离散程度。如果直方图呈现高峰且峰值较窄,说明数据可能较为集中;如果直方图呈现平坦且峰值较宽,说明数据可能较为分散。此外,也可以通过标准差、极差和四分位距等指标来描述数据的离散程度。
阅读全文