帮我用keras改写
时间: 2024-02-18 18:59:04 浏览: 131
好的,以下是使用Keras改写的代码:
```python
from keras.layers import Layer, average, GlobalAveragePooling2D, GlobalMaxPooling2D, Reshape, Dense, multiply, Permute, Lambda
import math
class ChannelAttentionModuleConv(Layer):
def __init__(self, gamma=2, b=1, **kwargs):
super(ChannelAttentionModuleConv, self).__init__(**kwargs)
self.gamma = gamma
self.b = b
def build(self, input_shape):
channels = input_shape[3]
kernel_size = int(abs((math.log(channels, 2) + self.b) / self.gamma))
kernel_size = kernel_size if kernel_size % 2 else kernel_size + 1
self.avg_pooling = GlobalAveragePooling2D()
self.max_pooling = GlobalMaxPooling2D()
self.conv = Dense(1, kernel_size, padding='same', use_bias=False, activation='sigmoid')
super(ChannelAttentionModuleConv, self).build(input_shape)
def call(self, inputs):
avg_x = self.avg_pooling(inputs)
max_x = self.max_pooling(inputs)
avg_out = self.conv(avg_x)
max_out = self.conv(max_x)
out = average([avg_out, max_out])
out = multiply([inputs, out])
return out
def compute_output_shape(self, input_shape):
return input_shape
```
这里我们使用了Keras中的一些常用层,如GlobalAveragePooling2D、GlobalMaxPooling2D、Dense等,同时也使用了一些Keras中的实用功能,如average、multiply。注意,我们将卷积操作改为了全连接层,并将输出的激活函数设置为sigmoid。
阅读全文