dnplot(post$beta, col=pal(1)[3], xlab=expression(beta))里面的col=pal()[]是什么意思
时间: 2024-06-05 07:12:04 浏览: 137
`col=pal(1)[3]`是指定绘图颜色为调色板`pal()`中的第3个颜色。`pal()`是一个自定义的调色板函数,该函数的作用是返回一个包含多个颜色的向量,这些颜色用于绘制图形时的填充或线条颜色。`[3]`表示从调色板中选取第三个颜色作为绘图的颜色。因此,这行代码的作用是将绘图颜色设为调色板中的第三个颜色。
相关问题
这段代码为什么不能一行两列的排列:par(mfrow=c(1,2)) boxplot(Estate$Price[Estate$Township == 1], Estate$Price[Estate$Township == 2], Estate$Price[Estate$Township == 3], Estate$Price[Estate$Township == 4], Estate$Price[Estate$Township == 5], xlab = "Township No.", ylab = "Price") ggplot(data = Estate, mapping = aes(x = Township, y = Price)) + geom_point(color = "cornflowerblue", alpha = .8, size = 3)
这段代码不能一行两列的排列是因为其中包含两个不同种类的图形绘制函数,即基于R作图的boxplot和基于ggplot2的geom_point。在R中,由于这两种作图方法的绘图系统不同,因此不能通过mfrow参数将它们同时排列在一个画布上。如果希望同时显示这两个图形,需要将它们分别放在两个画布上,或者使用ggplot2的函数来绘制整个图形。
请对以下R代码进行优化,画图使用ggplot2:set.seed(123) data <- matrix(rnorm(50*30), nrow = 50, ncol = 30) library(glmnet) x <- data[,1:29] y <- data[,30] fit1 <- cv.glmnet(x, y, alpha = 1, nfolds = 10) fit2 <- cv.glmnet(x, y+rnorm(50), alpha = 1, nfolds = 10) fit3 <- cv.glmnet(x, y+rnorm(50,mean=2), alpha = 1, nfolds = 10) cv1 <- min(fit1$cvm) cv2 <- min(fit2$cvm) cv3 <- min(fit3$cvm) par(mfrow=c(3,2)) plot(fit1$lambda, fit1$cvm, type="l", xlab="lambda", ylab="CV error", main="Model 1") abline(v=fit1$lambda.min, col="red") plot(fit1$lambda, fit1$glmnet.fit$dev.ratio, type="l", xlab="lambda", ylab="Prediction error", main="Model 1") abline(v=fit1$lambda.min, col="red") plot(fit2$lambda, fit2$cvm, type="l", xlab="lambda", ylab="CV error", main="Model 2") abline(v=fit2$lambda.min, col="red") plot(fit2$lambda, fit2$glmnet.fit$dev.ratio, type="l", xlab="lambda", ylab="Prediction error", main="Model 2") abline(v=fit2$lambda.min, col="red") plot(fit3$lambda, fit3$cvm, type="l", xlab="lambda", ylab="CV error", main="Model 3") abline(v=fit3$lambda.min, col="red") plot(fit3$lambda, fit3$glmnet.fit$dev.ratio, type="l", xlab="lambda", ylab="Prediction error", main="Model 3") abline(v=fit3$lambda.min, col="red") cat("CV of Model 1: ", cv1, "\n") cat("CV of Model 2: ", cv2, "\n") cat("CV of Model 3: ", cv3, "\n")
可以使用 ggplot2 包来画图,同时可以使用 apply() 函数来避免重复的代码。以下是优化后的代码:
```R
set.seed(123)
data <- matrix(rnorm(50*30), nrow = 50, ncol = 30)
library(glmnet)
x <- data[,1:29]
y <- data[,30]
fit1 <- cv.glmnet(x, y, alpha = 1, nfolds = 10)
fit2 <- cv.glmnet(x, y+rnorm(50), alpha = 1, nfolds = 10)
fit3 <- cv.glmnet(x, y+rnorm(50,mean=2), alpha = 1, nfolds = 10)
cv1 <- min(fit1$cvm)
cv2 <- min(fit2$cvm)
cv3 <- min(fit3$cvm)
library(ggplot2)
# define a function to plot CV and Prediction errors
plot_errors <- function(fit, model){
p1 <- ggplot() +
geom_line(aes(x = fit$lambda, y = fit$cvm), color = "blue") +
geom_vline(xintercept = fit$lambda.min, color = "red") +
xlab("lambda") +
ylab("CV error") +
ggtitle(paste0("Model ", model))
p2 <- ggplot() +
geom_line(aes(x = fit$lambda, y = fit$glmnet.fit$dev.ratio), color = "blue") +
geom_vline(xintercept = fit$lambda.min, color = "red") +
xlab("lambda") +
ylab("Prediction error") +
ggtitle(paste0("Model ", model))
plot_grid(p1, p2, ncol = 2)
}
# plot the errors for each model
plot_list <- lapply(list(fit1, fit2, fit3), function(fit) plot_errors(fit, which(list(fit1, fit2, fit3) == fit)))
# print the CV errors
cat("CV of Model 1: ", cv1, "\n")
cat("CV of Model 2: ", cv2, "\n")
cat("CV of Model 3: ", cv3, "\n")
# arrange and print the plots
plot_grid(plotlist = plot_list, ncol = 2)
```
这段代码首先定义了一个 `plot_errors()` 函数,用于绘制 CV error 和 Prediction error 的图形。然后,使用 `lapply()` 函数和一个列表,循环调用该函数来绘制每个模型的图形。最后,使用 `plot_grid()` 函数将所有的图形整合在一起。
阅读全文