hashMap的树化原理

时间: 2023-05-25 11:01:06 浏览: 51
哈希表的树化原理是指,当哈希表中的某个桶(bucket)中有大量的键值对时,为了减少哈希表的查找时间和空间占用,该桶中的链表将转换为树形结构。这种树结构被称为红黑树。 当一个桶中的链表长度超过了根据 JDK 的默认负载因子所计算的阈值(默认值为8),此桶中的所有键值对将转移到一棵新的红黑树中。在这个过程中,所有的键都必须实现 Comparable 接口,因为红黑树中的节点必须是可比较的。 以树的结构代替链表可以显著地减少哈希表的查找时间,因为树的平均查找时间复杂度为 O(log n),而链表的查找时间复杂度为 O(n)。通过使用红黑树,可以将最坏情况下的查找时间复杂度从 O(n) 降至 O(log n)。 此外,将链表转换为红黑树还有一个好处,就是可以减少哈希表空间的占用。当哈希表中的桶被树化后,可以节省大量的节点对象的内存分配,从而减少了 GC 的压力。
相关问题

hashmap红黑树树化退化

HashMap中的红黑树树化退化是指当链表中的节点数量较多时,HashMap会将链表转化为红黑树来提高查找效率。红黑树是一种自平衡的二叉查找树,可以在O(logN)的时间复杂度内进行查找、插入和删除操作。 在HashMap中,当某个哈希桶中的链表节点数量超过一个阈值(TREEIFY_THRESHOLD)时,就会触发将链表转化为红黑树的操作。这个阈值的默认值是8。具体的判断条件是binCount >= TREEIFY_THRESHOLD - 1。 转化为红黑树后,原本的链表结构就会被改变成一个更高效的树结构,这样就可以在更快的时间内执行查找、插入和删除操作。当然,如果在某些操作之后,哈希桶中的节点数量减少到一个较小的值(UNTREEIFY_THRESHOLD),则会将红黑树恢复为链表,以节省空间。 总之,在HashMap中,红黑树树化退化是为了提高链表操作的效率而引入的优化机制,它可以在特定的条件下将链表转化为红黑树,并且在节点数量变少时将红黑树恢复为链表。这样可以更好地平衡查找速度和空间的利用。<span class="em">1</span><span class="em">2</span><span class="em">3</span> #### 引用[.reference_title] - *1* *2* *3* [HashMap红黑树原理详解及源码分析](https://blog.csdn.net/qq_43207114/article/details/128617285)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v93^chatsearchT3_1"}}] [.reference_item style="max-width: 100%"] [ .reference_list ]

HashMap底层实现原理

HashMap是基于哈希表实现的,它的底层数据结构主要包括数组和链表(或红黑树)。具体实现原理如下: 1. 初始化HashMap时,会创建一个数组table用于存储数据,默认大小为16。 2. 当我们向HashMap中添加键值对时,首先会根据键的哈希值计算该键值对在数组中的位置。 3. 如果该位置上已经存在数据,那么就需要判断这个数据是否与要添加的数据的键相同。如果键相同,就直接替换掉原有的值;如果键不同,就需要采用链表(或红黑树)的方式来存储。在Java 8中,如果链表长度超过8,就会将链表转为红黑树。 4. 如果该位置上没有数据,就直接将键值对存储在该位置上。 5. 当我们通过键来获取值时,首先需要根据键的哈希值计算在数组中的位置,然后在该位置上查找对应的数据。如果该位置上没有数据,那么就返回null;如果该位置上有数据,就需要判断这个数据是否与要查找的键相同。如果相同,就返回对应的值;如果不同,就需要在链表(或红黑树)中继续查找,直到找到相同的键或者链表(或红黑树)结束。 6. 当我们从HashMap中删除键值对时,首先需要根据键的哈希值计算在数组中的位置,然后在该位置上查找对应的数据。如果该位置上没有数据,就不需要删除;如果该位置上有数据,就需要判断这个数据是否与要删除的键相同。如果相同,就直接删除;如果不同,就需要在链表(或红黑树)中继续查找,直到找到相同的键或者链表(或红黑树)结束。 总体而言,HashMap的底层实现原理主要涉及哈希函数、数组、链表(或红黑树)、键值对等概念。它的优点是可以快速地存储、查找和删除键值对,但也存在一些缺点,比如哈希冲突、扩容等问题。

相关推荐

最新推荐

recommend-type

毕业设计基于STC12C5A、SIM800C、GPS的汽车防盗报警系统源码.zip

STC12C5A通过GPS模块获取当前定位信息,如果车辆发生异常震动或车主打来电话(主动请求定位),将通过GSM发送一条定位短信到车主手机,车主点击链接默认打开网页版定位,如果有安装高德地图APP将在APP中打开并展示汽车当前位置 GPS模块可以使用多家的GPS模块,需要注意的是,当前程序对应的是GPS北斗双模芯片,故只解析 GNRMC数据,如果你使用GPS芯片则应改为GPRMC数据即可。 系统在初始化的时候会持续短鸣,每初始化成功一部分后将长鸣一声,如果持续短鸣很久(超过20分钟),建议通过串口助手查看系统输出的调试信息,系统串口默认输出从初始化开始的所有运行状态信息。 不过更建议你使用SIM868模块,集成GPS.GSM.GPRS,使用更加方便
recommend-type

基于tensorflow2.x卷积神经网络字符型验证码识别.zip

基于tensorflow2.x卷积神经网络字符型验证码识别 卷积神经网络(Convolutional Neural Networks, CNNs 或 ConvNets)是一类深度神经网络,特别擅长处理图像相关的机器学习和深度学习任务。它们的名称来源于网络中使用了一种叫做卷积的数学运算。以下是卷积神经网络的一些关键组件和特性: 卷积层(Convolutional Layer): 卷积层是CNN的核心组件。它们通过一组可学习的滤波器(或称为卷积核、卷积器)在输入图像(或上一层的输出特征图)上滑动来工作。 滤波器和图像之间的卷积操作生成输出特征图,该特征图反映了滤波器所捕捉的局部图像特性(如边缘、角点等)。 通过使用多个滤波器,卷积层可以提取输入图像中的多种特征。 激活函数(Activation Function): 在卷积操作之后,通常会应用一个激活函数(如ReLU、Sigmoid或tanh)来增加网络的非线性。 池化层(Pooling Layer): 池化层通常位于卷积层之后,用于降低特征图的维度(空间尺寸),减少计算量和参数数量,同时保持特征的空间层次结构。 常见的池化操作包括最大池化(Max Pooling)和平均池化(Average Pooling)。 全连接层(Fully Connected Layer): 在CNN的末端,通常会有几层全连接层(也称为密集层或线性层)。这些层中的每个神经元都与前一层的所有神经元连接。 全连接层通常用于对提取的特征进行分类或回归。 训练过程: CNN的训练过程与其他深度学习模型类似,通过反向传播算法和梯度下降(或其变种)来优化网络参数(如滤波器权重和偏置)。 训练数据通常被分为多个批次(mini-batches),并在每个批次上迭代更新网络参数。 应用: CNN在计算机视觉领域有着广泛的应用,包括图像分类、目标检测、图像分割、人脸识别等。 它们也已被扩展到处理其他类型的数据,如文本(通过卷积一维序列)和音频(通过卷积时间序列)。 随着深度学习技术的发展,卷积神经网络的结构和设计也在不断演变,出现了许多新的变体和改进,如残差网络(ResNet)、深度卷积生成对抗网络(DCGAN)等。
recommend-type

【三维装箱】遗传和模拟退火算法求解三维装箱优化问题【含Matlab源码 031期】.zip

【三维装箱】遗传和模拟退火算法求解三维装箱优化问题【含Matlab源码 031期】.zip
recommend-type

自己编写的python 程序计算cpk/ppk

cpk&ppk python 小程序,品友点评
recommend-type

基于Springboot开发的分布式抽奖系统.zip

基于springboot的java毕业&课程设计
recommend-type

zigbee-cluster-library-specification

最新的zigbee-cluster-library-specification说明文档。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

实现实时数据湖架构:Kafka与Hive集成

![实现实时数据湖架构:Kafka与Hive集成](https://img-blog.csdnimg.cn/img_convert/10eb2e6972b3b6086286fc64c0b3ee41.jpeg) # 1. 实时数据湖架构概述** 实时数据湖是一种现代数据管理架构,它允许企业以低延迟的方式收集、存储和处理大量数据。与传统数据仓库不同,实时数据湖不依赖于预先定义的模式,而是采用灵活的架构,可以处理各种数据类型和格式。这种架构为企业提供了以下优势: - **实时洞察:**实时数据湖允许企业访问最新的数据,从而做出更明智的决策。 - **数据民主化:**实时数据湖使各种利益相关者都可
recommend-type

SQL怎么实现 数据透视表

SQL可以通过使用聚合函数和GROUP BY子句来实现数据透视表。 例如,假设有一个销售记录表,其中包含产品名称、销售日期、销售数量和销售额等信息。要创建一个按照产品名称、销售日期和销售额进行汇总的数据透视表,可以使用以下SQL语句: ``` SELECT ProductName, SaleDate, SUM(SaleQuantity) AS TotalQuantity, SUM(SaleAmount) AS TotalAmount FROM Sales GROUP BY ProductName, SaleDate; ``` 该语句将Sales表按照ProductName和SaleDat
recommend-type

JSBSim Reference Manual

JSBSim参考手册,其中包含JSBSim简介,JSBSim配置文件xml的编写语法,编程手册以及一些应用实例等。其中有部分内容还没有写完,估计有生之年很难看到完整版了,但是内容还是很有参考价值的。