imdb双向lstm paddle2.3实现
时间: 2023-11-27 22:00:34 浏览: 86
以下是使用PaddlePaddle 2.3实现IMDB情感分析的双向LSTM代码:
首先,我们需要安装PaddlePaddle和相关的依赖项:
```python
!pip install paddlepaddle==2.3.0
!pip install paddlehub==2.1.0
!pip install paddlenlp==2.0.5
!pip install --upgrade paddlenlp
```
然后,我们可以导入必要的库和下载IMDB数据集:
```python
import paddle
import paddle.nn as nn
import paddle.optim as optim
from paddle.io import DataLoader
import paddlenlp as ppnlp
from paddlenlp.datasets import load_dataset
from paddlenlp.data import Pad, Stack
train_ds, test_ds = load_dataset('imdb', splits=('train', 'test'))
```
接下来,我们需要定义数据预处理器和数据集的转换器:
```python
tokenizer = ppnlp.data.Tokenizer()
vocab = ppnlp.data.Vocab.from_dict(tokenizer.vocab)
trans_fn = lambda x: (tokenizer(x['text'], vocab), x['label'])
train_ds = train_ds.map(trans_fn)
test_ds = test_ds.map(trans_fn)
```
接下来,我们将定义一个双向LSTM模型:
```python
class BiLSTM(nn.Layer):
def __init__(self, vocab_size, num_classes, hidden_size=128, num_layers=2):
super(BiLSTM, self).__init__()
# 定义嵌入层
self.embedding = nn.Embedding(
num_embeddings=vocab_size, embedding_dim=hidden_size)
# 定义双向LSTM层
self.bilstm = nn.LSTM(
input_size=hidden_size,
hidden_size=hidden_size,
num_layers=num_layers,
direction='bidirectional')
# 定义全连接层
self.fc = nn.Linear(hidden_size * 2, num_classes)
def forward(self, inputs):
# 嵌入层输入
embeds = self.embedding(inputs)
# 双向LSTM层输入
lstm_out, _ = self.bilstm(embeds)
# 取最后一个时间步的输出
last_out = lstm_out[:, -1, :]
# 全连接层输出
output = self.fc(last_out)
return output
```
接下来,我们将定义训练和测试函数:
```python
def train(model, data_loader, optimizer, criterion):
model.train()
loss_list = []
acc_list = []
for batch in data_loader:
input_ids, labels = batch
logits = model(input_ids)
loss = criterion(logits, labels)
loss.backward()
optimizer.step()
optimizer.clear_grad()
loss_list.append(loss.numpy())
acc_list.append(
paddle.metric.accuracy(
input=logits, label=labels.reshape([-1, 1])).numpy())
avg_loss = sum(loss_list) / len(loss_list)
avg_acc = sum(acc_list) / len(acc_list)
return avg_loss, avg_acc
def evaluate(model, data_loader, criterion):
model.eval()
loss_list = []
acc_list = []
for batch in data_loader:
input_ids, labels = batch
logits = model(input_ids)
loss = criterion(logits, labels)
loss_list.append(loss.numpy())
acc_list.append(
paddle.metric.accuracy(
input=logits, label=labels.reshape([-1, 1])).numpy())
avg_loss = sum(loss_list) / len(loss_list)
avg_acc = sum(acc_list) / len(acc_list)
return avg_loss, avg_acc
```
现在,我们可以开始训练模型:
```python
# 定义超参数
batch_size = 128
learning_rate = 1e-3
epochs = 10
# 定义模型
model = BiLSTM(len(vocab), 2)
# 定义损失函数和优化器
criterion = nn.CrossEntropyLoss()
optimizer = optim.Adam(parameters=model.parameters(), learning_rate=learning_rate)
# 定义数据加载器
train_loader = DataLoader(train_ds, batch_size=batch_size, shuffle=True, collate_fn=Stack(), num_workers=4)
test_loader = DataLoader(test_ds, batch_size=batch_size, shuffle=False, collate_fn=Stack(), num_workers=4)
# 训练模型
for epoch in range(1, epochs+1):
train_loss, train_acc = train(model, train_loader, optimizer, criterion)
test_loss, test_acc = evaluate(model, test_loader, criterion)
print(f'Epoch {epoch}: Train Loss {train_loss:.4f}, Train Acc {train_acc:.4f}, Test Loss {test_loss:.4f}, Test Acc {test_acc:.4f}')
```
在训练完成后,我们可以使用测试集评估模型的性能:
```python
test_loss, test_acc = evaluate(model, test_loader, criterion)
print(f'Test Loss {test_loss:.4f}, Test Acc {test_acc:.4f}')
```
这就是使用PaddlePaddle 2.3实现IMDB情感分析的双向LSTM代码。
阅读全文