dataframe按默认索引排序
时间: 2023-07-21 09:30:55 浏览: 88
可以使用`sort_index()`方法按照默认索引排序,例如:
```python
import pandas as pd
df = pd.DataFrame({'A': [1, 4, 2], 'B': [3, 1, 2]})
print(df)
# Output:
# A B
# 0 1 3
# 1 4 1
# 2 2 2
sorted_df = df.sort_index()
print(sorted_df)
# Output:
# A B
# 0 1 3
# 1 4 1
# 2 2 2
```
默认情况下,`sort_index()`方法会按照行索引进行排序。如果要按照列索引排序,可以使用`axis`参数指定为`1`,例如:
```python
sorted_df = df.sort_index(axis=1)
print(sorted_df)
# Output:
# A B
# 0 1 3
# 1 4 1
# 2 2 2
```
这样就按照列索引排序了。
相关问题
dataframe按照索引列排序
可以使用`sort_index`方法按照索引列排序。下面是一个例子:
```python
import pandas as pd
# 创建一个DataFrame
df = pd.DataFrame({'name': ['Alice', 'Bob', 'Charlie', 'David'],
'age': [25, 32, 18, 47],
'city': ['New York', 'Paris', 'London', 'Tokyo']})
# 按照索引列排序
df_sorted = df.sort_index()
print(df_sorted)
```
输出结果如下:
```
name age city
0 Alice 25 New York
1 Bob 32 Paris
2 Charlie 18 London
3 David 47 Tokyo
```
默认情况下,`sort_index`方法会按照升序排序。如果需要降序排序,可以设置参数`ascending=False`,例如:
```python
df_sorted = df.sort_index(ascending=False)
```
这样就会按照降序排序。
取得dataframe的行索引
在Pandas DataFrame中,你可以通过以下方式获取或修改行索引:
1. **查看当前行索引**[^1]:
```python
df.index # 显示当前DataFrame的行索引
```
2. **设置新行索引**:
如果你想改变行索引,例如将`dataframe`的某一列(如股票代码列)设为新的行索引,可以这样做:
```python
new_df = df.set_index('stock_code') # 假设'stock_code'是列名
```
这会创建一个新的DataFrame,其中原来的行索引被新列的唯一值替换。
3. **重命名行索引**[^2]:
使用`rename`方法可以给现有的行索引名称重新命名:
```python
renamed_df = df.rename(index={'old_name': 'new_name'})
```
4. **恢复默认整数型行索引**:
如果你想要恢复到默认的整数型行索引,可以使用`reset_index`方法:
```python
df.reset_index(drop=True, inplace=True)
```
`drop=True`表示删除原索引列,`inplace=True`则直接在原DataFrame上操作。
5. **根据特定条件排序行索引**:
在设置索引后,可以利用`sort_index`方法按需排序:
```python
sorted_df = new_df.sort_index(key=lambda x: x['date_column']) # 假设'date_column'是日期列名
```
阅读全文
相关推荐















