yolov5BiFPN
时间: 2023-08-06 17:05:17 浏览: 168
yolov5BiFPN是指在yolov5模型中使用了BiFPN结构。BiFPN是一种改进版的FPN网络结构,主要用于目标检测任务。它采用加权且双向连接的方式,通过构造双向通道实现跨尺度连接,将特征提取网络中的特征直接与自下而上路径中的相对大小特征融合,保留了更浅的语义信息,而不会丢失太多的深层语义信息。\[3\]
在BiFPN结构中,加权融合方式采用了快速归一化融合(Fast normalized fusion)。这种融合方式是为了提高训练速度而设计的,它将权重放缩至0~1范围内,而没有使用Softmax方式,因此训练速度很快。跨尺度连接通过添加一个跳跃连接和双向路径来实现。整个BiFPN结构如图4.11所示。\[2\]
在yolov5的代码中,可以在models/yolo.py文件的parse_model函数中搜索elif m is Concat:语句,在其后面加上BiFPN_Concat相关语句,具体可以添加以下代码:
```python
elif m in \[Concat, BiFPN_Concat2, BiFPN_Concat3\]:
c2 = sum(ch\[x\] for x in f)
```
这样就可以实现对BiFPN_Concat结构的添加。\[1\]
#### 引用[.reference_title]
- *1* [深度学习实战 1 YOLOv5结合BiFPN](https://blog.csdn.net/qq_41134483/article/details/127675346)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v91^insertT0,239^v3^insert_chatgpt"}} ] [.reference_item]
- *2* *3* [YOLOv5改进-引入BiFPN](https://blog.csdn.net/weixin_57130167/article/details/130463783)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v91^insertT0,239^v3^insert_chatgpt"}} ] [.reference_item]
[ .reference_list ]
阅读全文