fragmentShader: // "\nuniform sampler2D panorama;\nuniform float resolution;\nuniform mat4 transform;\nuniform float zoom;\nuniform float opacity;\n\nvarying vec2 vUv;\n\nconst float PI = 3.1415926535897932384626433832795;\n\nvoid main() {\n vec2 position = -1.0 + 2.0 * vUv;\n position *= vec2( zoom * resolution, zoom * 0.5 );\n\n float x2y2 = position.x * position.x + position.y * position.y;\n vec3 sphere_pnt = vec3( 2. * position, x2y2 - 1. ) / ( x2y2 + 1. );\n sphere_pnt = vec3( transform * vec4( sphere_pnt, 1.0 ) );\n\n vec2 sampleUV = vec2(\n 1.0 - (atan(sphere_pnt.y, sphere_pnt.x) / PI + 1.0) * 0.5,\n (asin(sphere_pnt.z) / PI + 0.5)\n );\n\n gl_FragColor = texture2D( panorama, sampleUV );\n gl_FragColor.a *= opacity;\n}", 是什么意思

时间: 2024-04-27 19:20:04 浏览: 7
这是一个 WebGL 中的 fragment shader 代码,用于将一个全景图像映射到一个球面上并进行渲染。它包含了一些 uniform 变量,如全景图像、分辨率、变换矩阵、缩放比例和透明度等,以及一个 varying 变量 vUv,表示当前像素的 UV 坐标。代码首先将 UV 坐标转换为球面上的坐标,然后通过反三角函数计算出球面上的采样纹理坐标 sampleUV,最后调用 texture2D 函数获取该点的颜色值,并乘以透明度作为最终的渲染颜色。
相关问题

var material = new three.ShaderMaterial({ uniforms: { panorama: { value: new three.Texture(), }, resolution: { value: 2.0, }, transform: { value: new three.Matrix4(), }, zoom: { value: 10.0, }, opacity: { value: 1.0, }, }, vertexShader: "\nvarying vec2 vUv;\n\nvoid main() {\n vUv = uv;\n gl_Position = vec4( position, 1.0 );\n}", fragmentShader: "\nuniform sampler2D panorama;\nuniform float resolution;\nuniform mat4 transform;\nuniform float zoom;\nuniform float opacity;\n\nvarying vec2 vUv;\n\nconst float PI = 3.1415926535897932384626433832795;\n\nvoid main() {\n vec2 position = -1.0 + 2.0 * vUv;\n position *= vec2( zoom * resolution, zoom * 0.5 );\n\n float x2y2 = position.x * position.x + position.y * position.y;\n vec3 sphere_pnt = vec3( 2. * position, x2y2 - 1. ) / ( x2y2 + 1. );\n sphere_pnt = vec3( transform * vec4( sphere_pnt, 1.0 ) );\n\n vec2 sampleUV = vec2(\n 1.0 - (atan(sphere_pnt.y, sphere_pnt.x) / PI + 1.0) * 0.5,\n (asin(sphere_pnt.z) / PI + 0.5)\n );\n\n gl_FragColor = texture2D( panorama, sampleUV );\n gl_FragColor.a *= opacity;\n}", });

这段代码是用于创建一个three.js中的ShaderMaterial材质,该材质使用了自定义的顶点着色器和片元着色器。其中uniforms中定义了五个变量:panorama、resolution、transform、zoom、opacity,分别代表全景图、分辨率、变换矩阵、缩放比例和透明度。顶点着色器中将uv坐标传递给片元着色器。片元着色器中将uv坐标转换成全景图上的点位置,使用该位置对全景图进行采样,并将透明度乘以gl_FragColor的alpha通道。

fragmentShader: " uniform sampler2D panorama; uniform float resolution; uniform mat4 transform; uniform float zoom; uniform float opacity; varying vec2 vUv; const float PI = 3.1415926535897932384626433832795; void main() { vec2 position = -1.0 + 2.0 * vUv; position *= vec2( zoom * resolution, zoom * 0.5 ); float x2y2 = position.x * position.x + position.y * position.y; vec3 sphere_pnt = vec3( 2. * position, x2y2 - 1. ) / ( x2y2 + 1. ); sphere_pnt = vec3( transform * vec4( sphere_pnt, 1.0 ) ); vec2 sampleUV = vec2( 1.0 - (atan(sphere_pnt.y, sphere_pnt.x) / PI + 1.0) * 0.5,(asin(sphere_pnt.z) / PI + 0.5)); gl_FragColor = texture2D( panorama, sampleUV ); gl_FragColor.a *= opacity; }",

这是一个用于渲染全景图像的片元着色器。它包含了以下几个 uniform 变量: - `panorama`:全景图像的纹理。 - `resolution`:全景图像的分辨率。 - `transform`:变换矩阵,用于对全景图像进行旋转、缩放等变换操作。 - `zoom`:缩放系数,用于缩放全景图像。 - `opacity`:透明度,用于控制全景图像的透明度。 在片元着色器中,首先通过 `varying vec2 vUv` 获取当前像素的纹理坐标,然后根据缩放系数和分辨率计算出当前像素在全景图像中的位置。接着,通过将该位置转换为球面坐标,并通过变换矩阵对球面坐标进行变换,计算出球面上对应的纹理坐标。最后,使用 `texture2D` 函数从纹理中获取该位置的颜色值,并将透明度值乘以 `opacity` 进行控制,得到最终的颜色值 `gl_FragColor`。

相关推荐

最新推荐

recommend-type

一文弄懂Pytorch的DataLoader, DataSet, Sampler之间的关系

主要介绍了一文弄懂Pytorch的DataLoader, DataSet, Sampler之间的关系,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习吧
recommend-type

pytorch sampler对数据进行采样的实现

PyTorch中还单独提供了一个sampler模块,用来对数据进行采样。常用的有随机采样器:RandomSampler,当dataloader的shuffle参数为True时,系统会自动调用这个采样器,实现打乱数据。默认的是采用SequentialSampler,...
recommend-type

Python源码-数学美之樱花.py

Python源码-数学美之樱花
recommend-type

zigbee-cluster-library-specification

最新的zigbee-cluster-library-specification说明文档。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

实现实时数据湖架构:Kafka与Hive集成

![实现实时数据湖架构:Kafka与Hive集成](https://img-blog.csdnimg.cn/img_convert/10eb2e6972b3b6086286fc64c0b3ee41.jpeg) # 1. 实时数据湖架构概述** 实时数据湖是一种现代数据管理架构,它允许企业以低延迟的方式收集、存储和处理大量数据。与传统数据仓库不同,实时数据湖不依赖于预先定义的模式,而是采用灵活的架构,可以处理各种数据类型和格式。这种架构为企业提供了以下优势: - **实时洞察:**实时数据湖允许企业访问最新的数据,从而做出更明智的决策。 - **数据民主化:**实时数据湖使各种利益相关者都可
recommend-type

用matlab绘制高斯色噪声情况下的频率估计CRLB,其中w(n)是零均值高斯色噪声,w(n)=0.8*w(n-1)+e(n),e(n)服从零均值方差为se的高斯分布

以下是用matlab绘制高斯色噪声情况下频率估计CRLB的代码: ```matlab % 参数设置 N = 100; % 信号长度 se = 0.5; % 噪声方差 w = zeros(N,1); % 高斯色噪声 w(1) = randn(1)*sqrt(se); for n = 2:N w(n) = 0.8*w(n-1) + randn(1)*sqrt(se); end % 计算频率估计CRLB fs = 1; % 采样频率 df = 0.01; % 频率分辨率 f = 0:df:fs/2; % 频率范围 M = length(f); CRLB = zeros(M,1); for
recommend-type

JSBSim Reference Manual

JSBSim参考手册,其中包含JSBSim简介,JSBSim配置文件xml的编写语法,编程手册以及一些应用实例等。其中有部分内容还没有写完,估计有生之年很难看到完整版了,但是内容还是很有参考价值的。
recommend-type

"互动学习:行动中的多样性与论文攻读经历"

多样性她- 事实上SCI NCES你的时间表ECOLEDO C Tora SC和NCESPOUR l’Ingén学习互动,互动学习以行动为中心的强化学习学会互动,互动学习,以行动为中心的强化学习计算机科学博士论文于2021年9月28日在Villeneuve d'Asq公开支持马修·瑟林评审团主席法布里斯·勒菲弗尔阿维尼翁大学教授论文指导奥利维尔·皮耶昆谷歌研究教授:智囊团论文联合主任菲利普·普雷教授,大学。里尔/CRISTAL/因里亚报告员奥利维耶·西格德索邦大学报告员卢多维奇·德诺耶教授,Facebook /索邦大学审查员越南圣迈IMT Atlantic高级讲师邀请弗洛里安·斯特鲁布博士,Deepmind对于那些及时看到自己错误的人...3谢谢你首先,我要感谢我的两位博士生导师Olivier和Philippe。奥利维尔,"站在巨人的肩膀上"这句话对你来说完全有意义了。从科学上讲,你知道在这篇论文的(许多)错误中,你是我可以依
recommend-type

实现实时监控告警系统:Kafka与Grafana整合

![实现实时监控告警系统:Kafka与Grafana整合](https://imgconvert.csdnimg.cn/aHR0cHM6Ly9tbWJpei5xcGljLmNuL21tYml6X2pwZy9BVldpY3ladXVDbEZpY1pLWmw2bUVaWXFUcEdLT1VDdkxRSmQxZXB5R1lxaWNlUjA2c0hFek5Qc3FyRktudFF1VDMxQVl3QTRXV2lhSWFRMEFRc0I1cW1ZOGcvNjQw?x-oss-process=image/format,png) # 1.1 Kafka集群架构 Kafka集群由多个称为代理的服务器组成,这