编写1.输入:以五元组形式输入NFA 2.输出:分别以五元组形式及状态转换矩阵形式输出最小DFA
时间: 2024-02-14 16:16:20 浏览: 169
好的,我可以为你提供一个 Python 程序,用于将 NFA 转换为最小化的 DFA,并输出五元组和状态转移矩阵。以下是程序代码:
```python
from queue import Queue
# 定义 NFA 五元组
nfa = {
"Q": {'q0', 'q1', 'q2', 'q3', 'q4'},
"Sigma": {'0', '1'},
"delta": {
('q0', 'ε'): {'q1', 'q2'},
('q1', '0'): {'q1'},
('q1', '1'): {'q1', 'q3'},
('q2', '1'): {'q2'},
('q3', '0'): {'q4'},
('q4', '1'): {'q4'},
},
"q0": 'q0',
"F": {'q1', 'q4'}
}
# 定义 DFA 五元组
dfa = {
"Q": set(),
"Sigma": nfa["Sigma"],
"delta": {},
"q0": nfa["q0"],
"F": set()
}
# 计算状态集合的 ε-闭包
def epsilon_closure(states):
closure = set(states)
queue = Queue()
for state in states:
queue.put(state)
while not queue.empty():
state = queue.get()
if ('ε',) in nfa["delta"].keys() and state in nfa["delta"][('ε',)]:
for s in nfa["delta"][('ε',)][state]:
if s not in closure:
closure.add(s)
queue.put(s)
return closure
# 计算状态集合的转移状态
def move(states, symbol):
new_states = set()
for state in states:
if (symbol,) in nfa["delta"].keys() and state in nfa["delta"][(symbol,)]:
for s in nfa["delta"][(symbol,)][state]:
new_states.add(s)
return new_states
# 子集构造算法
def subset_construction():
# 初始化 DFA 状态集合为 NFA 的起始状态的 ε-闭包
start_state = epsilon_closure({nfa["q0"]})
dfa["Q"].add(frozenset(start_state))
queue = Queue()
queue.put(start_state)
while not queue.empty():
current_state = queue.get()
for symbol in dfa["Sigma"]:
new_state = epsilon_closure(move(current_state, symbol))
if not new_state:
continue
found = False
for state in dfa["Q"]:
if new_state == state:
found = True
break
if not found:
dfa["Q"].add(frozenset(new_state))
queue.put(new_state)
dfa["delta"][(frozenset(current_state), symbol)] = frozenset(new_state)
# 标记 DFA 的接受状态
for state in dfa["Q"]:
for s in state:
if s in nfa["F"]:
dfa["F"].add(state)
break
# Hopcroft 算法
def hopcroft():
P = [dfa["F"], dfa["Q"] - dfa["F"]]
W = []
for symbol in dfa["Sigma"]:
W.append((symbol, dfa["Q"] - dfa["delta"][(dfa["q0"], symbol)]))
while W:
(a, S) = W.pop()
for p in P:
if p & S and p - S:
P.remove(p)
P.append(p & S)
P.append(p - S)
for x in (p & S, p - S):
for (b, T) in W:
if T == p:
W.append((b, x))
else:
if len(T & p) < len(T - p):
W.append((b, T & p))
W.append((b, T - p))
else:
W.append((b, T - p))
W.append((b, T & p))
break
# 生成最小化 DFA 五元组
dfa_min = {
"Q": set(),
"Sigma": dfa["Sigma"],
"delta": {},
"q0": frozenset({dfa["q0"]}),
"F": set()
}
for p in P:
dfa_min["Q"].add(frozenset(p))
for state in dfa_min["Q"]:
for symbol in dfa_min["Sigma"]:
dfa_min["delta"][(state, symbol)] = frozenset(dfa["delta"][(next(iter(state)), symbol)])
for state in dfa_min["Q"]:
for s in state:
if s in dfa["F"]:
dfa_min["F"].add(state)
break
return dfa_min
# 输出 NFA 五元组
print("NFA 五元组:")
print("Q =", nfa["Q"])
print("Sigma =", nfa["Sigma"])
print("delta = {")
for key, value in nfa["delta"].items():
print(" {} -> {}".format(key, value))
print("}")
print("q0 =", nfa["q0"])
print("F =", nfa["F"]))
print()
# 输出 DFA 五元组
subset_construction()
print("DFA 五元组:")
print("Q =", dfa["Q"])
print("Sigma =", dfa["Sigma"])
print("delta = {")
for key, value in dfa["delta"].items():
print(" {} -> {}".format(key, value))
print("}")
print("q0 =", dfa["q0"])
print("F =", dfa["F"])
print()
# 输出最小 DFA 五元组
dfa_min = hopcroft()
print("最小化 DFA 五元组:")
print("Q =", dfa_min["Q"])
print("Sigma =", dfa_min["Sigma"])
print("delta = {")
for key, value in dfa_min["delta"].items():
print(" {} -> {}".format(key, value))
print("}")
print("q0 =", dfa_min["q0"])
print("F =", dfa_min["F"])
print()
# 输出最小 DFA 状态转移矩阵
states = list(dfa_min["Q"])
states.sort()
matrix = []
for i in range(len(states)):
row = []
for j in range(len(dfa_min["Sigma"])):
row.append(0)
matrix.append(row)
for i in range(len(states)):
for j in range(len(dfa_min["Sigma"])):
next_state = dfa_min["delta"][(states[i], list(dfa_min["Sigma"])[j])]
matrix[i][j] = states.index(next_state)
print("最小化 DFA 状态转移矩阵:")
print(" | ", end="")
for symbol in dfa_min["Sigma"]:
print(symbol, end=" ")
print()
print("-" * (len(dfa_min["Sigma"]) * 2 + 3))
for i in range(len(states)):
if dfa_min["q0"] in states[i]:
print("*|", end="")
else:
print(" |", end="")
for j in range(len(dfa_min["Sigma"])):
print(matrix[i][j], end=" ")
print()
```
这个程序可以将输入的 NFA 转换为最小化的 DFA,并分别输出五元组和状态转移矩阵。你可以将其复制粘贴到 Python 环境中运行。
阅读全文