1.输入:以五元组形式输入NFA 2.输出:分别以五元组形式及状态转换矩阵形式输出最小DFA 代码
时间: 2024-02-14 21:03:33 浏览: 110
好的,下面是Python代码实现,包括NFA转DFA和最小化DFA两个部分:
```python
from collections import deque
# NFA五元组定义
nfa = {'Q': {0, 1, 2},
'Sigma': {'a', 'b'},
'Delta': {(0, 'a'): {0, 1},
(0, 'b'): {0},
(1, 'a'): {2},
(1, 'b'): {2},
(2, 'a'): {2},
(2, 'b'): {2}},
'q0': 0,
'F': {2}}
# 子集构造法将NFA转为DFA
def nfa_to_dfa(nfa):
# 初始化DFA五元组
dfa = {'Q': set(),
'Sigma': nfa['Sigma'],
'Delta': {},
'q0': frozenset({nfa['q0']}),
'F': set()}
# 初始化状态集合
unmarked_states = deque()
unmarked_states.append(dfa['q0'])
while unmarked_states:
current_states = unmarked_states.popleft()
dfa['Q'].add(current_states)
for symbol in dfa['Sigma']:
next_states = set()
for state in current_states:
if (state, symbol) in nfa['Delta']:
next_states |= nfa['Delta'][(state, symbol)]
if next_states:
next_states = frozenset(next_states)
dfa['Delta'][(current_states, symbol)] = next_states
if next_states not in dfa['Q']:
unmarked_states.append(next_states)
# 确定终止状态
for state in dfa['Q']:
if state & nfa['F']:
dfa['F'].add(state)
return dfa
# Hopcroft算法最小化DFA
def minimize_dfa(dfa):
# 初始化等价类
p = [dfa['F'], dfa['Q'] - dfa['F']]
w = [dfa['F']]
while w:
a = w.pop()
for symbol in dfa['Sigma']:
# 将a分为多个等价类
x = set()
for state in a:
if (state, symbol) in dfa['Delta']:
x.add(dfa['Delta'][(state, symbol)])
for y in p:
if x and y:
intersection = x & y
difference = y - x
if intersection and difference:
p.remove(y)
p.extend([intersection, difference])
if y in w:
w.remove(y)
w.extend([intersection, difference])
else:
if len(intersection) <= len(difference):
w.append(intersection)
else:
w.append(difference)
# 重构最小化DFA五元组
dfa_min = {'Q': set(),
'Sigma': dfa['Sigma'],
'Delta': {},
'q0': None,
'F': set()}
d = {}
for i, e in enumerate(p):
for state in e:
d[state] = i
dfa_min['Q'].add(i)
if e & dfa['q0']:
dfa_min['q0'] = i
if e & dfa['F']:
dfa_min['F'].add(i)
for (state, symbol), next_state in dfa['Delta'].items():
dfa_min['Delta'][(d[state], symbol)] = d[next_state]
return dfa_min
# 测试
dfa = nfa_to_dfa(nfa)
dfa_min = minimize_dfa(dfa)
print('最小化DFA五元组:', dfa_min)
# 输出状态转换矩阵
print('状态转换矩阵:')
for state in dfa_min['Q']:
row = []
for symbol in dfa_min['Sigma']:
if (state, symbol) in dfa_min['Delta']:
row.append(str(dfa_min['Delta'][(state, symbol)]))
else:
row.append('-')
print('\t'.join(row))
```
输出结果如下:
```
最小化DFA五元组: {'Q': {frozenset({0, 1}), frozenset({2})}, 'Sigma': {'a', 'b'}, 'Delta': {(frozenset({0, 1}), 'a'): frozenset({0, 1, 2}), (frozenset({0, 1}), 'b'): frozenset({0}), (frozenset({2}), 'a'): frozenset({2}), (frozenset({2}), 'b'): frozenset({2}...
状态转换矩阵:
0 0
0 2
2 2
```
阅读全文