粒子群优化做相机标定的python代码
时间: 2023-01-29 10:27:26 浏览: 34
粒子群优化(Particle Swarm Optimization, PSO)是一种基于群体智能的优化方法,它可以用来解决各种优化问题。在相机标定中,粒子群优化可以用来优化相机的内参数和畸变系数,使得重投影误差最小。
以下是一个使用粒子群优化进行相机标定的简单python代码示例:
```python
import numpy as np
from scipy.optimize import minimize
# 相机标定函数,用于计算重投影误差
def calibrate(params, points_2d, points_3d):
fx, fy, cx, cy, k1, k2, p1, p2 = params
K = np.array([[fx, 0, cx], [0, fy, cy], [0, 0, 1]])
points_3d = points_3d.T
points_2d = points_2d.T
num_points = points_3d.shape[1]
error = 0
for i in range(num_points):
X, Y, Z = points_3d[:, i]
x, y = points_2d[:, i]
x_, y_, w = np.dot(K, np.array([X, Y, Z]))
x_ /= w
y_ /= w
r2 = x_**2 + y_**2
dx = 2*p1*x_*y_ + p2*(r2 + 2*x_**2)
dy = p1*(r2 + 2*y_**2) + 2*p2*x_*y_
x_ = x_ + dx
y_ = y_ + dy
error += (x - x_)**2 + (y - y_)**2
return error
# 粒子群优化函数
def pso(calibrate, params_bounds, points_2d, points_3d, num_particles=50, num_iterations=100):
params_bounds = np.array(params_bounds)
params_min = params_bounds[:, 0]
params_max = params_bounds[:, 1]
particles = np.random.uniform(params_min, params_max, (num_particles, len(params_min)))
velocities = np.zeros((num_particles, len(params_min)))
pbest = particles.copy()
gbest = particles[0
阅读全文