解释这段代码class PNet(nn.Module): def __init__(self, is_train=False): super(PNet, self).__init__() self.is_train = is_train self.features = nn.Sequential(OrderedDict([ ('conv1', nn.Conv2d(3, 10, 3, 1)), ('prelu1', nn.PReLU(10)), ('pool1', nn.MaxPool2d((2,5), ceil_mode=True)), ('conv2', nn.Conv2d(10, 16, (3,5), 1)), ('prelu2', nn.PReLU(16)), ('conv3', nn.Conv2d(16, 32, (3,5), 1)), ('prelu3', nn.PReLU(32)) ])) self.conv4_1 = nn.Conv2d(32, 2, 1, 1) self.conv4_2 = nn.Conv2d(32, 4, 1, 1) def forward(self, x): """ Arguments: x: a float tensor with shape [batch_size, 3, h, w]. Returns: b: a float tensor with shape [batch_size, 4, h', w']. a: a float tensor with shape [batch_size, 2, h', w']. """ x = self.features(x) a = self.conv4_1(x) b = self.conv4_2(x) if self.is_train is False: a = F.softmax(a, dim=1) return b, a
时间: 2023-05-25 22:02:34 浏览: 119
MTCNN_TRAIN:MTCNN_使用PyTorch 0.4.0进行面部检测的训练脚本
这段代码定义了一个名为PNet的类,它是nn.Module的子类。该类的构造函数__init__接受一个is_train参数(默认为False),表示当前是否处于训练模式。
PNet的网络结构包含一个特征提取器features,它由多个卷积层和激活函数组成,并使用了OrderedDict来指定每个层的名称。接下来,PNet定义了两个1x1卷积层(conv4_1和conv4_2),它们的输出通道数分别为2和4。
PNet的前向函数forward接收一个输入张量x,将其传递给特征提取器features,并分别将输出张量x经过conv4_1和conv4_2得到a和b。如果当前为测试模式(is_train为False),则对a进行softmax归一化,最终返回b和a。
阅读全文