for (int i = 0; i < agvs.size(); i++) { if (!agv_paths[i].empty()) { painter.setPen(QPen(Qt::yellow, 3, Qt::SolidLine)); QPoint p1(agvs[i].getCurrentX() * nodeSpacing + nodeSpacing / 2, agvs[i].getCurrentY() * nodeSpacing + nodeSpacing / 2); for (int j = 0; j < agv_paths[i].size() - 1; j++) { QPoint p2(agv_paths[i][j]->x * nodeSpacing + nodeSpacing / 2, agv_paths[i][j]->y * nodeSpacing + nodeSpacing / 2); QPoint p3(agv_paths[i][j + 1]->x * nodeSpacing + nodeSpacing / 2, agv_paths[i][j + 1]->y * nodeSpacing + nodeSpacing / 2); painter.drawLine(p2, p3); } QPoint p4(agvs[i].getEndX() * nodeSpacing + nodeSpacing / 2, agvs[i].getEndY() * nodeSpacing +nodeSpacing / 2); painter.drawLine(p1, p4); } },一運行就卡死,怎麽修改代碼

时间: 2023-11-28 20:47:29 浏览: 32
这段代码可能会出现死循环或者是内存泄漏问题,需要进行一些修改。 首先你可以尝试使用 qDebug() 或者是 qDebug() << "debug info"; 在代码中添加一些调试信息,来查看程序在运行时的具体情况。 另外,你也可以尝试将 for 循环改为 foreach 循环,这样可以避免使用下标访问数组时出现的越界问题。 最后,你可以考虑将大量计算或者是绘图操作移到单独的函数中,以减轻主函数的负担,从而提高程序的性能和稳定性。 以下是修改后的代码: ``` for (auto agv : agvs) { if (!agv_paths.empty()) { painter.setPen(QPen(Qt::yellow, 3, Qt::SolidLine)); QPoint p1(agv.getCurrentX() * nodeSpacing + nodeSpacing / 2, agv.getCurrentY() * nodeSpacing + nodeSpacing / 2); for (int j = 0; j < agv_paths.size() - 1; j++) { QPoint p2(agv_paths[j]->x * nodeSpacing + nodeSpacing / 2, agv_paths[j]->y * nodeSpacing + nodeSpacing / 2); QPoint p3(agv_paths[j + 1]->x * nodeSpacing + nodeSpacing / 2, agv_paths[j + 1]->y * nodeSpacing + nodeSpacing / 2); painter.drawLine(p2, p3); } QPoint p4(agv.getEndX() * nodeSpacing + nodeSpacing / 2, agv.getEndY() * nodeSpacing +nodeSpacing / 2); painter.drawLine(p1, p4); } } ``` 在修改后的代码中,我们使用了 foreach 循环来遍历 agvs 数组,使用了 auto 关键字来自动推导 agv 的类型。 同时,我们将获取节点坐标和绘制线段的操作提取到了单独的代码块中,以减轻主函数的负担。 需要注意的是,在修改后的代码中,我们没有对 agv_paths 数组进行判断,可能会出现使用空数组的情况。你可以在程序中添加一些判断语句来避免这种情况的发生。

相关推荐

void MainWindow::moveAgvs_(){ timer =new QTimer(this); timer->start(1000); connect(timer, &QTimer::timeout, this, &MainWindow::moveAgvs);} void MainWindow::moveAgvs() { Astar astar; std::vector<Node*> path; std::vector<std::vector<Node*>> paths(agvs.size()); // 得到agv的路綫 for (int i = 0; i < agvs.size(); i++) { Node* start_node = new Node(agvs[i].getCurrentX(), agvs[i].getCurrentY()); Node* end_node; if (agvs[i].getLoad() == false) { end_node = new Node(agvs[i].getStartX(), agvs[i].getStartY()); } else { end_node = new Node(agvs[i].getEndX(), agvs[i].getEndY()); } std::vector<Node*> path = astar.getPath(start_node, end_node); paths[i] = path; //輸出agv的路綫 std::cout << "AGV " << i << " path: "; for (int j = 0; j < path.size(); j++) { std::cout << "(" << path[j]->x << ", " <y << ")"; if (j != path.size() - 1) { std::cout << " -> "; } } std::cout << std::endl; } for (int i = 0; i < agvs.size(); i++) { if (! paths[i].empty()) { Node* next_node = paths[i][0]; float speed = agvs[i].getSpeed(); float distance = sqrt(pow(next_node->x - agvs[i].getCurrentX(), 2) + pow(next_node->y - agvs[i].getCurrentY(), 2)); float time = distance / speed * 1000; QTimer::singleShot(time, this, &, i, next_node { agvs[i].setCurrentX(next_node->x); agvs[i].setCurrentY(next_node->y); std::cout << "AGV " << agvs[i].getid() << " current_x: " << agvs[i].getCurrentX() << " current_y: " << agvs[i].getCurrentY() <<std::endl; this->update(); if (next_node->x == agvs[i].getEndX() && next_node->y == agvs[i].getEndY()) { //task_to_agv(i); } }); } } },agv沒有模擬運行,修改一下

void MainWindow::moveAgvs() { Astar astar; std::vector<std::vector<Node*>> paths(agvs.size()); //根據agv獲取taskid,初始化 int completed_task_index = -1; // 如果任務都完成了,停止定時器 bool all_tasks_completed = true; for (int j = 0; j < tasks.size(); j++) { if (tasks[j].completed != 2) { all_tasks_completed = false; break; } } if (all_tasks_completed) { timer->stop(); // 停止定时器 return; } // 得到agv的路綫 for (int i = 0; i < agvs.size(); i++) { if (agvs[i].getLoad() == true) { // 如果是负载的状态 if (agvs[i].getCurrentX() == agvs[i].getEndX() && agvs[i].getCurrentY() == agvs[i].getEndY()) { // 如果到达终点 agvs[i].setLoad(false); // 设置为空载状态 agvs[i].setState(true); std::cout << "agv__id :" << agvs[i].getid() << " ,agv_get_task_id :" << agvs[i].get_task_id() << endl; for (int j = 0; j < tasks.size(); j++) { if (tasks[j].id == agvs[i].get_task_id()) { completed_task_index = j; break; } } if (completed_task_index != -1) { tasks[completed_task_index].completed = 2; } task_to_agv(); // 更新任务分配 update(); // 更新AGV状态 } else { // 否则行驶到终点 Node* start_node = new Node(agvs[i].getCurrentX(), agvs[i].getCurrentY()); Node* end_node1 = new Node(agvs[i].getEndX(), agvs[i].getEndY()); std::vector<Node*> path = astar.getPath(start_node, end_node1); path.erase(path.begin()); paths[i] = path; } } else { // 如果是空载的状态 if (agvs[i].getCurrentX() == agvs[i].getStartX() && agvs[i].getCurrentY() == agvs[i].getStartY()) { // 如果到达起点 agvs[i].setLoad(true); // 设置为负载状态 } else { // 否则行驶到起点 Node* start_node = new Node(agvs[i].getCurrentX(), agvs[i].getCurrentY()); Node* end_node = new Node(agvs[i].getStartX(), agvs[i].getStartY()); std::vector<Node*> path = astar.getPath(start_node, end_node); path.erase(path.begin()); paths[i] = path; } } },怎麽將path變爲成員變量,而不是局部變量

void MainWindow::moveAgvs_(){ timer =new QTimer(this); timer->start(100); connect(timer, &QTimer::timeout, this, &MainWindow::moveAgvs);} void MainWindow::moveAgvs() { Astar astar; std::vector<std::vector<Node*>> paths(agvs.size()); // 得到agv的路綫 for (int i = 0; i < agvs.size(); i++) { if (agvs[i].getState() == false) { if (agvs[i].getLoad()){ //如果是負載的狀態,則任務的起點到任務的終點 if (agvs[i].getCurrentX() == agvs[i].getEndX() && agvs[i].getCurrentY() == agvs[i].getEndY()) { agvs[i].setState(true); agvs[i].setLoad(false); tasks[i].setCompleted(2); task_to_agv(); } Node* start_node = new Node(agvs[i].getCurrentX(), agvs[i].getCurrentY()); Node* end_node1 = new Node(agvs[i].getEndX(), agvs[i].getEndY()); std::vector<Node*> path_to_end = astar.getPath(start_node, end_node1); path_to_end.erase(path_to_end.begin()); std::vector<Node*> path; path.insert(path.end(), path_to_end.begin(), path_to_end.end()); paths[i] = path; } else { //如果是空載的狀態,則行駛到任務的起點 //如果agv已經到達任務起點,變爲負載狀態 if (agvs[i].getCurrentX() == agvs[i].getStartX() && agvs[i].getCurrentY() == agvs[i].getStartY()) { agvs[i].setLoad(true); } Node* start_node = new Node(agvs[i].getCurrentX(), agvs[i].getCurrentY()); Node* end_node = new Node(agvs[i].getStartX(), agvs[i].getStartY()); std::vector<Node*> path_to_start = astar.getPath(start_node, end_node); std::vector<Node*> path; path.insert(path.end(), path_to_start.begin() + 1, path_to_start.end()); paths[i] = path; } } for (int i = 0; i < agvs.size(); i++) { std::cout << "path of AGV " << i << ": "; for (int j = 0; j < paths[i].size(); j++) { std::cout << "(" << paths[i][j]->x << ", " << paths[i][j]->y << ") "; } std::cout << std::endl; } //模擬小車行駛 for (int i = 0; i < agvs.size(); i++) { if (! paths[i].empty()) { Node* next_node = paths[i][0]; float speed = agvs[i].getSpeed(); float distance = sqrt(pow(next_node->x - agvs[i].getCurrentX(), 2) + pow(next_node->y - agvs[i].getCurrentY(), 2)); float time = distance / speed * 1000; //node_Value[next_node->x][next_node->y] = 10; QTimer::singleShot(time, this, &, i, next_node { agvs[i].setCurrentX(next_node->x); agvs[i].setCurrentY(next_node->y); this->update(); // 在窗口中重绘 }); } } } },黨agv小車到達最後一個任務的終點時候,結束qtime

for (int i = 0; i < agvs.size(); i++) { if (agvs[i].getLoad()){ painter.drawPixmap(agvs[i].getCurrentX()*25+200-(nodeSpacing-nodeSize)/2,(agvs[i].getCurrentY()+1)*25+50-(nodeSpacing-nodeSize)/2,25,25,QPixmap(":/new/prefix1/agvload.png").scaled(25,25)); } else { painter.drawPixmap(agvs[i].getCurrentX()*25+200-(nodeSpacing-nodeSize)/2,(agvs[i].getCurrentY()+1)25+50-(nodeSpacing-nodeSize)/2,25,25,QPixmap(":/new/prefix1/agv1.png").scaled(25,25)); },//模擬小車行駛 for (int i = 0; i < agvs.size(); i++) { for (int j = 0; j < tasks.size(); j++) { if (tasks[j].id == agvs[i].get_task_id()) { completed_task_index = j; break; } } if (tasks[completed_task_index].completed == 2 ) { // 如果已经完成任务 paths[i].clear(); continue; // 跳过此次循环 } if (! paths[i].empty()) { int cur_x = agvs[i].getCurrentX(); int cur_y = agvs[i].getCurrentY(); Node next_node = paths[i][0]; float speed = agvs[i].getSpeed(); float distance = sqrt(pow(next_node->x - agvs[i].getCurrentX(), 2) + pow(next_node->y - agvs[i].getCurrentY(), 2)); float time = distance / speed * 1000; // 计算电量的减少量 float power_consumption = distance /20; //_MAP[cur_x][cur_y] = 1; QTimer::singleShot(time, this, &, i, next_node, cur_x, cur_y, power_consumption { // 离开当前位置时将标记设为0 //MAP[cur_x][cur_y] = 0; agvs[i].setCurrentX(next_node->x); agvs[i].setCurrentY(next_node->y); // 更新电量 agvs[i].setpower(agvs[i].power- power_consumption); this->update(); // 在窗口中重绘 }); } },修改代碼:讓agv實現貝塞爾曲綫移動

// 得到agv的路綫 for (int i = 0; i < agvs.size(); i++) { if (agvs[i].getLoad() == true) { // 如果是负载的状态 if (agvs[i].getCurrentX() == agvs[i].getEndX() && agvs[i].getCurrentY() == agvs[i].getEndY()) { // 如果到达终点 agvs[i].setLoad(false); // 设置为空载状态 agvs[i].setState(true); std::cout << "agv__id :" << agvs[i].getid() << " ,agv_get_task_id :" << agvs[i].get_task_id() << endl; for (int j = 0; j < tasks.size(); j++) { if (tasks[j].id == agvs[i].get_task_id()) { completed_task_index = j; break; } } if (completed_task_index != -1) { tasks[completed_task_index].completed = 2; } task_to_agv(); // 更新任务分配 update(); // 更新AGV状态 } else { // 否则行驶到终点 Node* start_node = new Node(agvs[i].getCurrentX(), agvs[i].getCurrentY()); Node* end_node1 = new Node(agvs[i].getEndX(), agvs[i].getEndY()); std::vector<Node*> path = astar.getPath(start_node, end_node1); path.erase(path.begin()); paths[i] = path; } } else { // 如果是空载的状态 if (agvs[i].getCurrentX() == agvs[i].getStartX() && agvs[i].getCurrentY() == agvs[i].getStartY()) { // 如果到达起点 agvs[i].setLoad(true); // 设置为负载状态 } else { // 否则行驶到起点 Node* start_node = new Node(agvs[i].getCurrentX(), agvs[i].getCurrentY()); Node* end_node = new Node(agvs[i].getStartX(), agvs[i].getStartY()); std::vector<Node*> path = astar.getPath(start_node, end_node); path.erase(path.begin()); paths[i] = path; } } }修改代碼為,首先判斷agv的對應 任務的completed的值是否為1,不爲1跳出

void MainWindow::moveAgvs() { Astar astar; std::vector<std::vector<Node*>> paths(agvs.size()); // 得到agv的路綫 for (int i = 0; i < agvs.size(); i++) { if (agvs[i].getState() == false) { if (agvs[i].getLoad()){//如果是負載的狀態,則任務的起點到任務的終點 if (agvs[i].getCurrentX() == agvs[i].getEndX() && agvs[i].getCurrentY() == agvs[i].getEndY()) { agvs[i].setState(true); agvs[i].setLoad(false); tasks[i].setCompleted(2); task_to_agv(); } Node* start_node = new Node(agvs[i].getCurrentX(), agvs[i].getCurrentY()); Node* end_node1 = new Node(agvs[i].getEndX(), agvs[i].getEndY()); std::vector<Node*> path_to_end = astar.getPath(start_node, end_node1); path_to_end.erase(path_to_end.begin()); std::vector<Node*> path; path.insert(path.end(), path_to_end.begin(), path_to_end.end()); paths[i] = path;} else { //如果是空載的狀態,則行駛到任務的起點 //如果agv已經到達任務起點,變爲負載狀態 if (agvs[i].getCurrentX() == agvs[i].getStartX() && agvs[i].getCurrentY() == agvs[i].getStartY()) { agvs[i].setLoad(true); } Node* start_node = new Node(agvs[i].getCurrentX(), agvs[i].getCurrentY()); Node* end_node = new Node(agvs[i].getStartX(), agvs[i].getStartY()); std::vector<Node*> path_to_start = astar.getPath(start_node, end_node); std::vector<Node*> path; path.insert(path.end(), path_to_start.begin() + 1, path_to_start.end()); paths[i] = path;} } //模擬小車行駛 for (int i = 0; i < agvs.size(); i++) { if (! paths[i].empty()) { Node* next_node = paths[i][0]; float speed = agvs[i].getSpeed(); float distance = sqrt(pow(next_node->x - agvs[i].getCurrentX(), 2) + pow(next_node->y - agvs[i].getCurrentY(), 2)); float time = distance / speed * 1000; QTimer::singleShot(time, this, &, i, next_node { agvs[i].setCurrentX(next_node->x); agvs[i].setCurrentY(next_node->y); //std::cout << "AGV " << agvs[i].getid() << " current_x: " << agvs[i].getCurrentX() << " current_y: " << agvs[i].getCurrentY() <<std::endl; this->update(); }); } } } },for(int i=0;i<31;i++) for(int j=0;j<31;j++){ if (i<30) { // Create the nodes painter.drawLine(i*25+200+nodeSize,(j+1)*25+50+nodeSize/2,(i+1)*25+200,(j+1)25+50+nodeSize/2); } if (j <30) { painter.drawLine(i25+200+nodeSize/2,(j+1)25+50+nodeSize,i25+200+nodeSize/2,(j+2)*25+50); } },將path的路徑坐標兩點之間的綫變成黃色

for (int i = 0; i < agvs.size(); i++) { if (agvs[i].getLoad() == true) { // 如果是负载的状态 if (agvs[i].getCurrentX() == agvs[i].getEndX() && agvs[i].getCurrentY() == agvs[i].getEndY()) { // 如果到达终点 agvs[i].setLoad(false); // 设置为空载状态 agvs[i].setState(true); std :: cout << "agv__id :" << agvs[i].getid() << " ,agv_get_task_id :" << agvs[i].get_task_id() << endl; for (int j = 0; j < tasks.size(); j++) { if (tasks[j].id == agvs[i].get_task_id()) { completed_task_index = j; break; } } if (completed_task_index != -1) { tasks[completed_task_index].completed = 2; } task_to_agv(); // 更新任务分配 update(); // 更新AGV状态 } else { // 否则行驶到终点 Node* start_node = new Node(agvs[i].getCurrentX(), agvs[i].getCurrentY()); Node* end_node1 = new Node(agvs[i].getEndX(), agvs[i].getEndY()); std::vector<Node*> path_to_end = astar.getPath(start_node, end_node1); path_to_end.erase(path_to_end.begin()); std::vector<Node*> path; path.insert(path.end(), path_to_end.begin(), path_to_end.end()); paths[i] = path; } } else { // 如果是空载的状态 if (agvs[i].getCurrentX() == agvs[i].getStartX() && agvs[i].getCurrentY() == agvs[i].getStartY()) { // 如果到达起点 agvs[i].setLoad(true); // 设置为负载状态 } else { // 否则行驶到起点 Node* start_node = new Node(agvs[i].getCurrentX(), agvs[i].getCurrentY()); Node* end_node = new Node(agvs[i].getStartX(), agvs[i].getStartY()); std::vector<Node*> path_to_start = astar.getPath(start_node, end_node); std::vector<Node*> path; path.insert(path.end(), path_to_start.begin() + 1, path_to_start.end()); paths[i] = path; } } },添加代碼: 將得到的path路徑存儲到另一個數組,并且更新覆蓋數組

最新推荐

recommend-type

Last Loaded 8只数码管滚动显示数字串.DBK

Last Loaded 8只数码管滚动显示数字串.DBK
recommend-type

yolo开发ention-model-for-networ笔记

yolo开发ention-model-for-networ笔记yolo开发ention-model-for-networ笔记
recommend-type

微信小程序前端解密获取手机号

微信小程序前端解密获取手机号
recommend-type

EXP2.html

EXP2.html
recommend-type

基于时间序列的异常检测 参照skyline、anomalyzer使用c++实现.zip

C++是一种广泛使用的编程语言,它是由Bjarne Stroustrup于1979年在新泽西州美利山贝尔实验室开始设计开发的。C++是C语言的扩展,旨在提供更强大的编程能力,包括面向对象编程和泛型编程的支持。C++支持数据封装、继承和多态等面向对象编程的特性和泛型编程的模板,以及丰富的标准库,提供了大量的数据结构和算法,极大地提高了开发效率。12 C++是一种静态类型的、编译式的、通用的、大小写敏感的编程语言,它综合了高级语言和低级语言的特点。C++的语法与C语言非常相似,但增加了许多面向对象编程的特性,如类、对象、封装、继承和多态等。这使得C++既保持了C语言的低级特性,如直接访问硬件的能力,又提供了高级语言的特性,如数据封装和代码重用。13 C++的应用领域非常广泛,包括但不限于教育、系统开发、游戏开发、嵌入式系统、工业和商业应用、科研和高性能计算等领域。在教育领域,C++因其结构化和面向对象的特性,常被选为计算机科学和工程专业的入门编程语言。在系统开发领域,C++因其高效性和灵活性,经常被作为开发语言。游戏开发领域中,C++由于其高效性和广泛应用,在开发高性能游戏和游戏引擎中扮演着重要角色。在嵌入式系统领域,C++的高效和灵活性使其成为理想选择。此外,C++还广泛应用于桌面应用、Web浏览器、操作系统、编译器、媒体应用程序、数据库引擎、医疗工程和机器人等领域。16 学习C++的关键是理解其核心概念和编程风格,而不是过于深入技术细节。C++支持多种编程风格,每种风格都能有效地保证运行时间效率和空间效率。因此,无论是初学者还是经验丰富的程序员,都可以通过C++来设计和实现新系统或维护旧系统。3
recommend-type

zigbee-cluster-library-specification

最新的zigbee-cluster-library-specification说明文档。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

MATLAB柱状图在信号处理中的应用:可视化信号特征和频谱分析

![matlab画柱状图](https://img-blog.csdnimg.cn/3f32348f1c9c4481a6f5931993732f97.png) # 1. MATLAB柱状图概述** MATLAB柱状图是一种图形化工具,用于可视化数据中不同类别或组的分布情况。它通过绘制垂直条形来表示每个类别或组中的数据值。柱状图在信号处理中广泛用于可视化信号特征和进行频谱分析。 柱状图的优点在于其简单易懂,能够直观地展示数据分布。在信号处理中,柱状图可以帮助工程师识别信号中的模式、趋势和异常情况,从而为信号分析和处理提供有价值的见解。 # 2. 柱状图在信号处理中的应用 柱状图在信号处理
recommend-type

解释这行代码 c = ((double)rand() / RAND_MAX) * (a + b - fabs(a - b)) + fabs(a - b);

这行代码是用于生成 a 和 b 之间的随机数。首先,它使用 rand() 函数生成一个 [0,1) 之间的随机小数,然后将这个小数乘以 a、b 范围内的差值,再加上 a 和 b 中的较小值。这可以确保生成的随机数大于等于 a,小于等于 b,而且不会因为 a 和 b 之间的差距过大而导致难以生成足够多的随机数。最后,使用 fabs() 函数来确保计算结果是正数。
recommend-type

JSBSim Reference Manual

JSBSim参考手册,其中包含JSBSim简介,JSBSim配置文件xml的编写语法,编程手册以及一些应用实例等。其中有部分内容还没有写完,估计有生之年很难看到完整版了,但是内容还是很有参考价值的。