# Dimension of Matrix ------------------------- A <- matrix(1:6,2,3) length(A) dim(A) nrow(A) ncol(A)

时间: 2023-08-15 21:53:26 浏览: 40
这段代码介绍了 R 语言中获取矩阵维度信息的方法。 在 R 语言中,可以使用 dim() 函数来获取矩阵的维度信息。例如,在代码中,使用 matrix(1:6, 2, 3) 创建了一个 2 行 3 列的矩阵 A。使用 dim(A) 函数可以获取矩阵 A 的维度信息,返回结果为向量 c(2, 3),表示矩阵 A 有 2 行 3 列。 可以使用 nrow() 函数和 ncol() 函数来获取矩阵的行数和列数。例如,在代码中,使用 nrow(A) 函数返回矩阵 A 的行数,返回结果为 2;使用 ncol(A) 函数返回矩阵 A 的列数,返回结果为 3。 另外,可以使用 length() 函数来获取矩阵的元素数量,返回结果为元素个数,即 6。但是,需要注意的是,length() 函数返回的是矩阵展开后的元素数量,而不是矩阵的行数和列数。
相关问题

MATLAB中t-SNE源代码

以下是MATLAB中t-SNE算法的源代码示例: ```matlab function mappedX = tsne(X, no_dims, initial_dims, perplexity) %TSNE t-distributed Stochastic Neighbor Embedding % % mappedX = tsne(X, no_dims, initial_dims, perplexity) % % The function runs the t-SNE algorithm on dataset X to reduce its % dimensionality to no_dims. The initial solution is given by initial_dims % and the perplexity of the Gaussian kernel is given by perplexity (typically % a value between 5 and 50). The variable mappedX returns the two-dimensional % data points in mappedX. % % Note: The algorithm is memory intensive; e.g. for N=5000, you will need % about 2GB of RAM. % % (C) Laurens van der Maaten, 2008 % University of California, San Diego if ~exist('no_dims', 'var') || isempty(no_dims) no_dims = 2; end if ~exist('initial_dims', 'var') || isempty(initial_dims) initial_dims = min(50, size(X, 2)); end if ~exist('perplexity', 'var') || isempty(perplexity) perplexity = 30; end % First check whether we already have an initial solution if size(X, 2) == 1 && no_dims == 1 % If X is one-dimensional, we only need to embed it in one dimension mappedX = X; return elseif no_dims > size(X, 2) % If the number of input dimensions is smaller than the desired number % of output dimensions, simply pad the matrix with zeros. warning(['Target dimensionality reduced to ' num2str(size(X, 2)) ' by PCA.']); no_dims = size(X, 2); end if ~exist('Y', 'var') || isempty(Y) Y = randn(size(X, 1), no_dims); end % Compute pairwise distances sum_X = sum(X .^ 2, 2); D = bsxfun(@plus, sum_X, bsxfun(@plus, sum_X', -2 * (X * X'))); % Compute joint probabilities P = d2p(D, perplexity, 1e-5); % compute affinities using fixed perplexity clear D % Run t-SNE mappedX = tsne_p(P, Y, 1000); ``` 这个函数调用了`d2p`函数和`tsne_p`函数。其中`d2p`函数的代码如下: ```matlab function P = d2p(D, perplexity, tol) %D2P Identifies appropriate sigma's to get kk NNs up to some tolerance % % P = d2p(D, perplexity, tol) % % Identifies the appropriate sigma to obtain a Gaussian kernel matrix with a % certain perplexity (approximately constant conditional entropy) for a % set of Euclidean input distances D. The desired perplexity is specified % by perplexity. The function returns the final Gaussian kernel matrix P, % whose elements P_{i,j} represent the probability of observing % datapoint j given datapoint i, normalized so that the sum over all i and j % is 1. % % The function iteratively searches for a value of sigma that results in a % Gaussian distribution over the perplexity-defined number of nearest % neighbors of each point. % % Note: The function is designed for use with the large data sets and % requires sufficient memory to store the entire NxN distance matrix for % your NxP data matrix X. % % Note: The function may return P=NaN, indicating numerical difficulties. % In such cases, the 'tol' parameter should be increased and the function % should be rerun. % % The function is based on earlier MATLAB code by Laurens van der Maaten % (lvdmaaten@gmail.com) and uses ideas from the following paper: % % * D. L. D. Saul and S. T. Roweis. Think globally, fit locally: Unsupervised % learning of low dimensional manifolds. Journal of Machine Learning % Research 4(2003) 119-155. % % (C) Joshua V. Dillon, 2014 % Initialize some variables [n, ~] = size(D); % number of instances P = zeros(n, n); % empty probability matrix beta = ones(n, 1); % empty precision vector logU = log(perplexity); % log(perplexity) (H) % Compute P-values disp('Computing P-values...'); for i=1:n if mod(i, 500) == 0 disp(['Computed P-values ' num2str(i) ' of ' num2str(n) ' datapoints...']); end % Compute the Gaussian kernel and entropy for the current precision [P(i,:), beta(i)] = gaussiandist(D(i,:), tol, beta(i), logU); end disp('Mean value of sigma: '); disp(mean(sqrt(1 ./ beta))); % Make sure P-values are symmetric P = (P + P') ./ (2 * n); % Zero any negative values P(P < 0) = 0; end %------------------------------------------------------------------------- function [P, beta] = gaussiandist(x, tol, beta, logU) %GAUSSIANDIST Computes the Gaussian kernel and entropy for a perplexity %defined by logU. % % [P, beta] = gaussiandist(x, tol, beta, logU) % % Returns the Gaussian kernel and entropy for a given perplexity, defined % by logU, for the NxD matrix X. The function iteratively searches for a % value of sigma that results in a Gaussian distribution over the % perplexity-defined number of nearest neighbors of each point. % % Note: The function is designed for use with the large data sets and % requires sufficient memory to store the NxN distance matrix. % % Note: The function may return P=NaN, indicating numerical difficulties. % In such cases, the 'tol' parameter should be increased and the function % should be rerun. % % The function is based on earlier MATLAB code by Laurens van der Maaten % (lvdmaaten@gmail.com) and uses ideas from the following paper: % % * D. L. D. Saul and S. T. Roweis. Think globally, fit locally: Unsupervised % learning of low dimensional manifolds. Journal of Machine Learning % Research 4(2003) 119-155. % % (C) Joshua V. Dillon, 2014 % Initialize some variables [n, ~] = size(x); % number of instances P = zeros(1, n); % empty probability vector sumP = realmin; % minimum value to avoid log(0) K = 0; % number of nearest neighbors % Search for good sigma, iterating until we have the perplexity we want while abs(sumP - logU) > tol % Compute Gaussian kernel and entropy for current precision P = exp(-beta * x).^2; sumP = sum(P); H = log(sumP) + beta * sum(x .* P) / sumP; % Adjust beta according to the perplexity if isnan(H) beta = beta * 2; P = NaN(1, n); continue; end if H > logU betaNew = beta * 0.5; else betaNew = beta * 2; end % Update precision beta = betaNew; end % Return final Gaussian kernel row for this point P = P / sumP; end ``` 最后,`tsne_p`函数的代码如下: ```matlab function Y = tsne_p(P, labels, no_dims) %TSNE_P Performs symmetric t-SNE on affinity matrix P % % Y = tsne_p(P, labels, no_dims) % % The function performs symmetric t-SNE on pairwise similarity matrix P % to reduce its dimensionality to no_dims. The matrix P is assumed to be % symmetric, sum up to 1, and have zeros on its diagonal. % The labels parameter is an optional vector of labels that can be used to % color the resulting scatter plot. The function returns the two-dimensional % data points in Y. % The perplexity is the only parameter the user normally needs to adjust. % In most cases, a value between 5 and 50 works well. % % Note: This implementation uses the "fast" version of t-SNE. This should % run faster than the original version but may also have different numerical % properties. % % Note: The function is memory intensive; e.g. for N=5000, you will need % about 2GB of RAM. % % (C) Laurens van der Maaten, 2008 % University of California, San Diego if ~exist('labels', 'var') labels = []; end if ~exist('no_dims', 'var') || isempty(no_dims) no_dims = 2; end % First check whether we already have an initial solution if size(P, 1) ~= size(P, 2) error('Affinity matrix P should be square'); end if ~isempty(labels) && length(labels) ~= size(P, 1) error('Mismatch in number of labels and size of P'); end % Initialize variables n = size(P, 1); % number of instances momentum = 0.5; % initial momentum final_momentum = 0.8; % value to which momentum is changed mom_switch_iter = 250; % iteration at which momentum is changed stop_lying_iter = 100; % iteration at which lying about P-values is stopped max_iter = 1000; % maximum number of iterations epsilon = 500; % initial learning rate min_gain = .01; % minimum gain for delta-bar-delta % Initialize the solution Y = randn(n, no_dims); dY = zeros(n, no_dims); iY = zeros(n, no_dims); gains = ones(n, no_dims); % Compute P-values P = P ./ sum(P(:)); P = max(P, realmin); P = P * 4; % early exaggeration P = min(P, 1e-12); % Lie about the P-vals to find better local minima P = P ./ sum(P(:)); P = max(P, realmin); const = sum(P(:) .* log(P(:))); for iter = 1:max_iter % Compute pairwise affinities sum_Y = sum(Y .^ 2, 2); num = 1 ./ (1 + bsxfun(@plus, sum_Y, bsxfun(@plus, sum_Y', -2 * (Y * Y')))); num(1:n+1:end) = 0; Q = max(num ./ sum(num(:)), realmin); % Compute gradient PQ = P - Q; for i=1:n dY(i,:) = sum(bsxfun(@times, PQ(:,i), bsxfun(@minus, Y, Y(i,:))), 1); end % Perform the update if iter < stop_lying_iter momentum = min_gain * momentum + (1 - min_gain) * dY; else momentum = final_momentum; end gains = (gains + .2) .* (sign(dY) ~= sign(iY)) + ... (gains * .8) .* (sign(dY) == sign(iY)); gains(gains < min_gain) = min_gain; iY = momentum; dY = gains .* momentum; Y = Y + dY; Y = bsxfun(@minus, Y, mean(Y, 1)); % Compute current value of cost function if ~rem(iter, 10) C = const - sum(P(:) .* log(Q(:))); if ~isempty(labels) disp(['Iteration ' num2str(iter) ': error is ' num2str(C) ', norm of gradient is ' num2str(norm(dY))]); end end % Stop lying about P-values if iter == stop_lying_iter P = P ./ 4; end end % Return solution if iter == max_iter disp(['Maximum number of iterations reached (' num2str(max_iter) ')']); end if ~isempty(labels) figure, scatter(Y(:,1), Y(:,2), 9, labels, 'filled'); end end ```

reshape(-1,1)

The 'reshape(-1,1)' function is used in Python to change the shape of an array or matrix. The '-1' parameter represents an unknown dimension, while the '1' parameter represents the desired number of columns. When applied to an array, the reshape function will convert it into a one-dimensional array with one column. For example, if we have an array with 12 elements, the reshape(-1,1) function will convert it into a 12x1 matrix. Here's an example: ``` import numpy as np arr = np.array([[1,2,3], [4,5,6], [7,8,9]]) new_arr = arr.reshape(-1,1) print(arr) print(new_arr) ``` Output: ``` [[1 2 3] [4 5 6] [7 8 9]] [[1] [2] [3] [4] [5] [6] [7] [8] [9]] ``` In this example, we have an array with three rows and three columns. After applying the reshape(-1,1) function, we get a new array with nine rows and one column.

相关推荐

解释:% 'Distance' - Distance measure, in P-dimensional space, that KMEANS % should minimize with respect to. Choices are: % {'sqEuclidean'} - Squared Euclidean distance (the default) % 'cosine' - One minus the cosine of the included angle % between points (treated as vectors). Each % row of X SHOULD be normalized to unit. If % the intial center matrix is provided, it % SHOULD also be normalized. % % 'Start' - Method used to choose initial cluster centroid positions, % sometimes known as "seeds". Choices are: % {'sample'} - Select K observations from X at random (the default) % 'cluster' - Perform preliminary clustering phase on random 10% % subsample of X. This preliminary phase is itself % initialized using 'sample'. An additional parameter % clusterMaxIter can be used to control the maximum % number of iterations in each preliminary clustering % problem. % matrix - A K-by-P matrix of starting locations; or a K-by-1 % indicate vector indicating which K points in X % should be used as the initial center. In this case, % you can pass in [] for K, and KMEANS infers K from % the first dimension of the matrix. % % 'MaxIter' - Maximum number of iterations allowed. Default is 100. % % 'Replicates' - Number of times to repeat the clustering, each with a % new set of initial centroids. Default is 1. If the % initial centroids are provided, the replicate will be % automatically set to be 1. % % 'clusterMaxIter' - Only useful when 'Start' is 'cluster'. Maximum number % of iterations of the preliminary clustering phase. % Default is 10. %

最新推荐

recommend-type

VMP技术解析:Handle块优化与壳模板初始化

"这篇学习笔记主要探讨了VMP(Virtual Machine Protect,虚拟机保护)技术在Handle块优化和壳模板初始化方面的应用。作者参考了看雪论坛上的多个资源,包括关于VMP还原、汇编指令的OpCode快速入门以及X86指令编码内幕的相关文章,深入理解VMP的工作原理和技巧。" 在VMP技术中,Handle块是虚拟机执行的关键部分,它包含了用于执行被保护程序的指令序列。在本篇笔记中,作者详细介绍了Handle块的优化过程,包括如何删除不使用的代码段以及如何通过指令变形和等价替换来提高壳模板的安全性。例如,常见的指令优化可能将`jmp`指令替换为`push+retn`或者`lea+jmp`,或者将`lodsbyteptrds:[esi]`优化为`moval,[esi]+addesi,1`等,这些变换旨在混淆原始代码,增加反逆向工程的难度。 在壳模板初始化阶段,作者提到了1.10和1.21两个版本的区别,其中1.21版本增加了`Encodingofap-code`保护,增强了加密效果。在未加密时,代码可能呈现出特定的模式,而加密后,这些模式会被混淆,使分析更加困难。 笔记中还提到,VMP会使用一个名为`ESIResults`的数组来标记Handle块中的指令是否被使用,值为0表示未使用,1表示使用。这为删除不必要的代码提供了依据。此外,通过循环遍历特定的Handle块,并依据某种规律(如`v227&0xFFFFFF00==0xFACE0000`)进行匹配,可以找到需要处理的指令,如`push0xFACE0002`和`movedi,0xFACE0003`,然后将其替换为安全的重定位值或虚拟机上下文。 在结构体使用方面,笔记指出壳模板和用户代码都会通过`Vmp_AllDisassembly`函数进行解析,而且0x8和0x10字段通常都指向相同的结构体。作者还提到了根据`pNtHeader_OptionalHeader.Magic`筛选`ESI_Matching_Array`数组的步骤,这可能是为了进一步确定虚拟机上下文的设置。 这篇笔记深入解析了VMP技术在代码保护中的应用,涉及汇编指令的优化、Handle块的处理以及壳模板的初始化,对于理解反逆向工程技术以及软件保护策略有着重要的参考价值。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

【进阶】音频处理基础:使用Librosa

![【进阶】音频处理基础:使用Librosa](https://picx.zhimg.com/80/v2-a39e5c9bff1d920097341591ca8a2dfe_1440w.webp?source=1def8aca) # 2.1 Librosa库的安装和导入 Librosa库是一个用于音频处理的Python库。要安装Librosa库,请在命令行中输入以下命令: ``` pip install librosa ``` 安装完成后,可以通过以下方式导入Librosa库: ```python import librosa ``` 导入Librosa库后,就可以使用其提供的各种函数
recommend-type

python中字典转换成json

在Python中,你可以使用`json`模块将字典转换为JSON格式的字符串。下面是一个简单的示例: ```python import json # 假设我们有一个字典 dict_data = { "name": "John", "age": 30, "city": "New York" } # 使用json.dumps()函数将字典转换为JSON json_string = json.dumps(dict_data) print(json_string) # 输出:{"name": "John", "age": 30, "city": "New York"}
recommend-type

C++ Primer 第四版更新:现代编程风格与标准库

"Cpp Primer第四版中文版(电子版)1" 本书《Cpp Primer》第四版是一本深入浅出介绍C++编程语言的教程,旨在帮助初学者和有经验的程序员掌握现代C++编程技巧。作者在这一版中进行了重大更新,以适应C++语言的发展趋势,特别是强调使用标准库来提高编程效率。书中不再过于关注底层编程技术,而是将重点放在了标准库的运用上。 第四版的主要改动包括: 1. 内容重组:为了反映现代C++编程的最佳实践,书中对语言主题的顺序进行了调整,使得学习路径更加顺畅。 2. 添加辅助学习工具:每章增设了“小结”和“术语”部分,帮助读者回顾和巩固关键概念。此外,重要术语以黑体突出,已熟悉的术语以楷体呈现,以便读者识别。 3. 特殊标注:用特定版式标注关键信息,提醒读者注意语言特性,避免常见错误,强调良好编程习惯,同时提供通用的使用技巧。 4. 前后交叉引用:增加引用以帮助读者理解概念之间的联系。 5. 额外讨论和解释:针对复杂概念和初学者常遇到的问题,进行深入解析。 6. 大量示例:提供丰富的代码示例,所有源代码都可以在线获取,便于读者实践和学习。 本书保留了前几版的核心特色,即以实例教学,通过解释和展示语言特性来帮助读者掌握C++。作者的目标是创作一本清晰、全面、准确的教程,让读者在编写程序的过程中学习C++,同时也展示了如何有效地利用这门语言。 《Cpp Primer》第四版不仅适合C++初学者,也适合想要更新C++知识的老手,它全面覆盖了C++语言的各个方面,包括基础语法、类、模板、STL(Standard Template Library)等,同时引入了现代C++的特性,如智能指针、RAII(Resource Acquisition Is Initialization)、lambda表达式等,使读者能够跟上C++语言的发展步伐,提升编程技能。
recommend-type

"互动学习:行动中的多样性与论文攻读经历"

多样性她- 事实上SCI NCES你的时间表ECOLEDO C Tora SC和NCESPOUR l’Ingén学习互动,互动学习以行动为中心的强化学习学会互动,互动学习,以行动为中心的强化学习计算机科学博士论文于2021年9月28日在Villeneuve d'Asq公开支持马修·瑟林评审团主席法布里斯·勒菲弗尔阿维尼翁大学教授论文指导奥利维尔·皮耶昆谷歌研究教授:智囊团论文联合主任菲利普·普雷教授,大学。里尔/CRISTAL/因里亚报告员奥利维耶·西格德索邦大学报告员卢多维奇·德诺耶教授,Facebook /索邦大学审查员越南圣迈IMT Atlantic高级讲师邀请弗洛里安·斯特鲁布博士,Deepmind对于那些及时看到自己错误的人...3谢谢你首先,我要感谢我的两位博士生导师Olivier和Philippe。奥利维尔,"站在巨人的肩膀上"这句话对你来说完全有意义了。从科学上讲,你知道在这篇论文的(许多)错误中,你是我可以依
recommend-type

【基础】网络编程入门:使用HTTP协议

![【基础】网络编程入门:使用HTTP协议](https://img-blog.csdnimg.cn/direct/4fbc6b5a6d744a519429654f56ea988e.png) # 1. 网络编程基础** **1.1 网络基础知识** 网络是连接计算机和设备的系统,允许它们交换数据和资源。它由节点(计算机、服务器、路由器等)和连接它们的数据链路组成。网络可以是局域网(LAN)、广域网(WAN)或互联网。 **1.2 TCP/IP协议栈** TCP/IP协议栈是一组通信协议,用于在网络上传输数据。它分为四层: * **链路层:**处理物理连接和数据传输。 * **网络层:
recommend-type

matlab画矢量分布图

在MATLAB中,绘制矢量分布图通常用于可视化二维或三维空间中的向量场,这有助于理解力场、风速、磁场等现象的分布情况。以下是使用MATLAB创建矢量分布图的基本步骤: 1. 准备数据:首先,你需要有一个表示向量场的矩阵,其中每个元素代表一个点的x、y坐标及其对应的矢量分量。 2. 使用`quiver`函数:MATLAB提供了一个内置函数`quiver(x, y, U, V)`,其中`x`和`y`是网格的行和列坐标,`U`和`V`是对应于每个网格点的x和y分量的向量值。 ```matlab [X, Y] = meshgrid(x, y); % 创建网格 quiver(X,
recommend-type

计算机系统基础实验:缓冲区溢出攻击(Lab3)

"计算机系统基础实验-Lab3-20191主要关注缓冲区溢出攻击,旨在通过实验加深学生对IA-32函数调用规则和栈结构的理解。实验涉及一个名为`bufbomb`的可执行程序,学生需要进行一系列缓冲区溢出尝试,以改变程序的内存映像,执行非预期操作。实验分为5个难度级别,从Smoke到Nitro,逐步提升挑战性。实验要求学生熟悉C语言和Linux环境,并能熟练使用gdb、objdump和gcc等工具。实验数据包括`lab3.tar`压缩包,内含`bufbomb`、`bufbomb.c`源代码、`makecookie`(用于生成唯一cookie)、`hex2raw`(字符串格式转换工具)以及bufbomb的反汇编源程序。运行bufbomb时需提供学号作为命令行参数,以生成特定的cookie。" 在这个实验中,核心知识点主要包括: 1. **缓冲区溢出攻击**:缓冲区溢出是由于编程错误导致程序在向缓冲区写入数据时超过其实际大小,溢出的数据会覆盖相邻内存区域,可能篡改栈上的重要数据,如返回地址,从而控制程序执行流程。实验要求学生了解并实践这种攻击方式。 2. **IA-32函数调用规则**:IA-32架构下的函数调用约定,包括参数传递、栈帧建立、返回值存储等,这些规则对于理解缓冲区溢出如何影响栈结构至关重要。 3. **栈结构**:理解栈的工作原理,包括局部变量、返回地址、保存的寄存器等如何在栈上组织,是成功实施溢出攻击的基础。 4. **Linux环境**:实验在Linux环境下进行,学生需要掌握基本的Linux命令行操作,以及如何在该环境下编译、调试和运行程序。 5. **GDB**:GNU Debugger(GDB)是调试C程序的主要工具,学生需要学会使用它来设置断点、查看内存、单步执行等,以分析溢出过程。 6. **Objdump**:这是一个反汇编工具,用于查看二进制文件的汇编代码,帮助理解程序的内存布局和执行逻辑。 7. **C语言编程**:实验涉及修改C源代码和理解已有的C程序,因此扎实的C语言基础是必不可少的。 8. **安全性与学术诚信**:实验强调了学术诚信的重要性,抄袭将受到严厉的处罚,这提示学生必须独立完成实验,尊重他人的工作。 9. **编程技巧**:实验要求学生能够熟练运用编程技巧,如缓冲区填充、跳转指令构造等,以实现对bufbomb的溢出攻击。 10. **实验等级与挑战**:不同级别的实验难度递增,鼓励学生逐步提升自己的技能和理解,从基础的缓冲区溢出到更复杂的攻击技术。 通过这个实验,学生不仅可以学习到安全相关的概念和技术,还能锻炼实际操作和问题解决能力,这对于理解和预防现实世界中的安全威胁具有重要意义。
recommend-type

关系数据表示学习

关系数据卢多维奇·多斯桑托斯引用此版本:卢多维奇·多斯桑托斯。关系数据的表示学习机器学习[cs.LG]。皮埃尔和玛丽·居里大学-巴黎第六大学,2017年。英语。NNT:2017PA066480。电话:01803188HAL ID:电话:01803188https://theses.hal.science/tel-01803188提交日期:2018年HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaireUNIVERSITY PIERRE和 MARIE CURIE计算机科学、电信和电子学博士学院(巴黎)巴黎6号计算机科学实验室D八角形T HESIS关系数据表示学习作者:Ludovic DOS SAntos主管:Patrick GALLINARI联合主管:本杰明·P·伊沃瓦斯基为满足计算机科学博士学位的要求而提交的论文评审团成员:先生蒂埃里·A·退休记者先生尤尼斯·B·恩