用C++,openmp,opencv实现连通区域标记的二遍扫描算法,要先将输入的图像二值化,并且用动态二维数组来存储每个像素所属的连通区域标记
时间: 2024-05-14 18:14:57 浏览: 118
以下是用C,OpenMP和OpenCV实现的连通区域标记的二遍扫描算法的示例代码。在此示例中,输入图像被假设为名为“input.png”的PNG文件,并且输出图像被保存为名为“output.png”的PNG文件。
```
#include <stdio.h>
#include <stdlib.h>
#include <omp.h>
#include <opencv2/core/core.hpp>
#include <opencv2/highgui/highgui.hpp>
#include <opencv2/imgproc/imgproc.hpp>
using namespace cv;
int main(int argc, char** argv)
{
// Read input image
Mat input = imread("input.png", CV_LOAD_IMAGE_GRAYSCALE);
int height = input.rows;
int width = input.cols;
// Binarize input image
Mat binary;
threshold(input, binary, 128, 255, THRESH_BINARY);
// Allocate dynamic 2D array to store labels
int** labels = new int*[height];
for (int i = 0; i < height; i++)
labels[i] = new int[width];
// Initialize labels to -1
#pragma omp parallel for
for (int i = 0; i < height; i++)
for (int j = 0; j < width; j++)
labels[i][j] = -1;
// First pass
int next_label = 0;
#pragma omp parallel for
for (int i = 0; i < height; i++) {
for (int j = 0; j < width; j++) {
if (binary.at<uchar>(i, j) == 255) {
int left = (j > 0) ? labels[i][j-1] : -1;
int up = (i > 0) ? labels[i-1][j] : -1;
if (left == -1 && up == -1) { // Create new label
labels[i][j] = next_label;
next_label++;
} else if (left == -1) { // Use up label
labels[i][j] = up;
} else if (up == -1) { // Use left label
labels[i][j] = left;
} else { // Merge labels
int min_label = (left < up) ? left : up;
int max_label = (left > up) ? left : up;
labels[i][j] = min_label;
#pragma omp parallel for
for (int ii = 0; ii < height; ii++) {
for (int jj = 0; jj < width; jj++) {
if (labels[ii][jj] == max_label)
labels[ii][jj] = min_label;
}
}
}
}
}
}
// Second pass
int* counts = new int[next_label];
for (int i = 0; i < next_label; i++)
counts[i] = 0;
#pragma omp parallel for
for (int i = 0; i < height; i++) {
for (int j = 0; j < width; j++) {
if (labels[i][j] >= 0) {
int label = labels[i][j];
#pragma omp atomic
counts[label]++;
}
}
}
#pragma omp parallel for
for (int i = 0; i < height; i++) {
for (int j = 0; j < width; j++) {
if (labels[i][j] >= 0) {
int label = labels[i][j];
int count = counts[label];
int color = (count > 200) ? 255 : 0; // Threshold count
binary.at<uchar>(i, j) = color;
}
}
}
// Save output image
imwrite("output.png", binary);
// Deallocate dynamic 2D array
for (int i = 0; i < height; i++)
delete[] labels[i];
delete[] labels;
delete[] counts;
return 0;
}
```
在此示例中,算法的第一遍扫描通过使用OpenMP并行化来加速计算。第二遍扫描也使用OpenMP并行化,但是在计算每个连通区域的像素计数时使用了OpenMP原子操作,以确保线程安全。算法还使用OpenCV中的threshold函数来执行二值化,并使用Mat对象来处理图像。
阅读全文