df.sort_values(by=[1],ascending = False,inplace=True)
时间: 2024-06-04 14:06:11 浏览: 74
这段代码是用来对DataFrame按照第二列的值进行降序排序的。具体解释如下:
- `df`:表示要排序的DataFrame;
- `sort_values`:表示进行排序;
- `by=[1]`:表示按照第二列进行排序,因为Python的索引是从0开始的,所以第二列的索引为1;
- `ascending=False`:表示按照降序排序;
- `inplace=True`:表示直接在原DataFrame上进行排序,不需要创建新的DataFrame。
如果需要使用升序排序,只需要将`ascending`参数设置为`True`即可。
相关问题
解释下这段代码 第三方商品 __df1 = __temp_df[__temp_df['show_name'] == '第三方商品'] if not __df1.empty: __df1 = __df1.pivot_table(index=['name', 'show_name'], values=['buy_num'], aggfunc=np.sum).reset_index() else: __df1 = __df1[['name', 'show_name', 'buy_num']] # 非第三方商品 __df2 = __temp_df[__temp_df['show_name'] != '第三方商品'] if not __df2.empty: __df2 = __df2.pivot_table(index=['gt_uuid', 'show_name'] ,values=['buy_num'], aggfunc=np.sum).reset_index() __df2 = pd.merge(left=__df2, right=pd.DataFrame(s_gt_rv, columns=['gt_uuid', 'goods_name']), how='left', on='gt_uuid') __df2 = __df2[['goods_name', 'show_name', 'buy_num']] __df2.rename(columns={'goods_name': 'name'}, inplace=True) else: __df2 = __df2[['name', 'show_name', 'buy_num']] __temp_df = pd.concat([__df1, __df2]) del __df1, __df2 __temp_df.rename(columns={'name': 'goods_name', 'show_name': 'gc_name', 'buy_num': 'num'}, inplace=True) __temp_df.sort_values(by='num', ascending=False, inplace=True) return_data['goods']['goods_list'] = __temp_df.to_dict(orient='records') __temp_df = __temp_df[['gc_name', 'num']] __temp_df = __temp_df.pivot_table(index='gc_name', values='num', aggfunc=np.sum).reset_index() __temp_df.sort_values(by='num', ascending=False, inplace=True) return_data['goods']['gc_list'] = __temp_df.to_dict(orient='records') del __temp_df
这段代码是对一个名为 `__temp_df` 的数据框进行处理,并将处理结果存储在 `return_data` 字典的 `goods` 键下。
首先,根据条件 `__temp_df['show_name'] == '第三方商品'`,筛选出满足条件的行,存储在 `__df1` 中。如果 `__df1` 不为空,则对其进行数据透视操作,按照 `name` 和 `show_name` 分组,计算 `buy_num` 的总和,并重置索引。否则,保留 `__df1` 的 `name`、`show_name` 和 `buy_num` 列。
接着,根据条件 `__temp_df['show_name'] != '第三方商品'`,筛选出满足条件的行,存储在 `__df2` 中。如果 `__df2` 不为空,则对其进行数据透视操作,按照 `gt_uuid` 和 `show_name` 分组,计算 `buy_num` 的总和,并重置索引。然后,将 `__df2` 与一个包含列名为 `['gt_uuid', 'goods_name']` 的 DataFrame 进行左连接,并将结果存储在 `__df2` 中。最后,保留 `__df2` 的 `goods_name`、`show_name` 和 `buy_num` 列,并将列名 `goods_name` 改为 `name`。
接下来,通过合并 `__df1` 和 `__df2` 构成新的数据框 `__temp_df`。之后,删除 `__df1` 和 `__df2` 变量。
然后,对 `__temp_df` 进行列名的重命名,将 `name` 改为 `goods_name`,`show_name` 改为 `gc_name`,`buy_num` 改为 `num`。将 `__temp_df` 按照 `num` 降序排序。
接着,将 `__temp_df` 转换为字典格式,并将结果存储在 `return_data` 字典的 `goods_list` 键下。再次对 `__temp_df` 进行处理,只保留 `gc_name` 和 `num` 两列,并进行数据透视操作,按照 `gc_name` 分组,计算 `num` 的总和,并重置索引。最后,将结果按照 `num` 降序排序。
最后,将处理后的 `__temp_df` 转换为字典格式,并将结果存储在 `return_data` 字典的 `gc_list` 键下。最后,删除 `__temp_df` 变量。
import pandas as pd df=pd.read_csv('D:/20230706/sdssSpecPhoto.csv') df1=df.sort_values(by="ra",ascending=True) df2=df1.drop_duplicates(subset=['ra','dec'],keep='first',inplace=False) df3=df2.iloc[:,1:3] df3.to_csv("D:/20230706/sdss_corrdinate1.csv") df4=pd.read_csv("D:/20230706/sdss_ALLWISE.csv",index_col=0)
您已经成功导入了 Pandas 库,并使用 `pd.read_csv` 函数读取了名为 'D:/20230706/sdssSpecPhoto.csv' 的 CSV 文件,将其存储在名为 'df' 的 DataFrame 中。
接下来,您对 DataFrame 'df' 进行了排序操作,按照 'ra' 列的值进行升序排序,并将结果存储在名为 'df1' 的新 DataFrame 中。
然后,您使用 `drop_duplicates` 函数在 'df1' DataFrame 上去除了重复的行,基于 'ra' 和 'dec' 列的值进行判断,并保留第一次出现的行。这一操作的结果被存储在名为 'df2' 的新 DataFrame 中。
接着,您使用 `iloc` 方法从 'df2' DataFrame 中选取了所有行和第1、2列的数据,并将结果存储在名为 'df3' 的新 DataFrame 中。
随后,您使用 `to_csv` 方法将 'df3' DataFrame 中的数据写入到名为 'D:/20230706/sdss_corrdinate1.csv' 的 CSV 文件中。
最后,您使用 `pd.read_csv` 函数读取了名为 'D:/20230706/sdss_ALLWISE.csv' 的 CSV 文件,并将其存储在名为 'df4' 的 DataFrame 中,并将第一列作为索引列。
阅读全文