matlab手动实现多维高斯核函数的岭回归
时间: 2023-09-14 16:11:50 浏览: 246
岭回归是一种常见的线性回归方法,它通过引入一个正则化项来解决过拟合问题。在岭回归中,我们使用带有高斯核函数的正则化项,可以将其扩展到多维情况。
以下是手动实现多维高斯核函数的岭回归的步骤:
1. 导入数据
我们需要导入训练集和测试集数据。假设训练集数据为 X_train 和 y_train,测试集数据为 X_test 和 y_test。
2. 定义高斯核函数
多维高斯核函数的定义如下:
$$
K(x_i, x_j) = \exp\left(-\frac{\|x_i - x_j\|^2}{2\sigma^2}\right)
$$
其中,$x_i$ 和 $x_j$ 分别表示样本 i 和样本 j,$\sigma$ 是高斯核函数的带宽参数。
我们可以定义一个函数来计算两个样本之间的高斯核函数值:
```
function kernel = gaussian_kernel(x1, x2, sigma)
kernel = exp(-norm(x1 - x2)^2 / (2 * sigma^2));
end
```
3. 计算核矩阵
我们需要计算训练集和测试集的核矩阵。核矩阵 K 的元素 K(i,j) 表示样本 i 和样本 j 之间的高斯核函数值。
```
function K = compute_kernel_matrix(X1, X2, sigma)
m = size(X1, 1);
n = size(X2, 1);
K = zeros(m, n);
for i = 1:m
for j = 1:n
K(i,j) = gaussian_kernel(X1(i,:), X2(j,:), sigma);
end
end
end
```
4. 训练岭回归模型
我们需要求解下面的优化问题:
$$
\min_{\theta} \|y - K\theta\|^2 + \lambda\|\theta\|^2
$$
其中,$\theta$ 是岭回归模型的参数,$\lambda$ 是正则化参数。
我们可以使用最小二乘法来求解上述优化问题:
```
function theta = train_ridge_regression(X, y, sigma, lambda)
K = compute_kernel_matrix(X, X, sigma);
m = size(X, 1);
I = eye(m);
theta = inv(K + lambda * I) * y;
end
```
5. 预测
我们可以使用训练好的岭回归模型来进行预测:
```
function y_pred = predict(X_train, y_train, X_test, sigma, lambda)
theta = train_ridge_regression(X_train, y_train, sigma, lambda);
K = compute_kernel_matrix(X_test, X_train, sigma);
y_pred = K * theta;
end
```
完整代码如下:
```
function kernel = gaussian_kernel(x1, x2, sigma)
kernel = exp(-norm(x1 - x2)^2 / (2 * sigma^2));
end
function K = compute_kernel_matrix(X1, X2, sigma)
m = size(X1, 1);
n = size(X2, 1);
K = zeros(m, n);
for i = 1:m
for j = 1:n
K(i,j) = gaussian_kernel(X1(i,:), X2(j,:), sigma);
end
end
end
function theta = train_ridge_regression(X, y, sigma, lambda)
K = compute_kernel_matrix(X, X, sigma);
m = size(X, 1);
I = eye(m);
theta = inv(K + lambda * I) * y;
end
function y_pred = predict(X_train, y_train, X_test, sigma, lambda)
theta = train_ridge_regression(X_train, y_train, sigma, lambda);
K = compute_kernel_matrix(X_test, X_train, sigma);
y_pred = K * theta;
end
```
使用示例:
```
% 导入数据
X_train = [1 2; 3 4; 5 6];
y_train = [7; 8; 9];
X_test = [2 3; 4 5];
% 训练岭回归模型并进行预测
sigma = 1;
lambda = 0.1;
y_pred = predict(X_train, y_train, X_test, sigma, lambda);
disp(y_pred); % 输出预测结果
```
阅读全文
相关推荐


















