unexpected key in source state_dict: norm.weight, norm.bias, head.weight, head.bias, layers.0.blocks.1.attn_mask, layers.1.blocks.1.attn_mask, layers.2.blocks.1.attn_mask, layers.2.blocks.3.attn_mask, layers.2.blocks.5.attn_mask
时间: 2024-04-03 13:31:19 浏览: 253
这个错误通常是由于加载的state_dict中包含了模型结构中没有的键所导致的。具体来说,这可能是因为你正在尝试将一个预训练的模型加载到一个不同结构的模型中,或者是因为你正在尝试加载一个旧版本的state_dict到一个新版本的模型中。解决这个问题的方法是检查你的代码和模型定义,确保它们匹配,并且确保你正在加载正确版本的state_dict。
相关问题
Missing key(s) in state_dict: "conv1.weight" Unexpected key(s) in state_dict: "model.conv1.weight",
这个问题发生在使用预训练模型的时候,可能是因为预训练模型的权重参数的key与当前模型的权重参数的key不匹配所致。可以尝试使用模型的load_state_dict方法,将预训练模型的权重参数加载到当前模型中。在加载时需要使用字典类型的参数进行匹配。例如,如果预训练模型中的key为"model.conv1.weight",而当前模型中的key为"conv1.weight",可以通过以下代码进行加载:
```python
pretrained_dict = torch.load('pretrained_model.pth')
model_dict = model.state_dict()
# 将预训练模型的key中的"model."去掉
pretrained_dict = {k.replace("model.", ""): v for k, v in pretrained_dict.items()}
# 将预训练模型的参数加载到当前模型中
model_dict.update(pretrained_dict)
model.load_state_dict(model_dict)
```
这样就可以将预训练模型的权重参数加载到当前模型中了。
if isinstance(self.pretrained, str): self.apply(_init_weights) logger = get_root_logger() logger.info(f'load model from: {self.pretrained}') checkpoint = torch.load(self.pretrained, map_location='cpu') state_dict = checkpoint['model'] state_dict['patch_embed.proj.weight'] = state_dict['patch_embed.proj.weight'].unsqueeze(2).repeat(1,1,self.patch_size[0],1,1) / self.patch_size[0] ## Duplicate weights for temporal attention and temporal norm # new_state_dict = state_dict.copy() # for key in state_dict: # if 'blocks' in key and 'attn' in key and 'relative' not in key and 'mask' not in key: # new_key = key.replace('attn','temporal_attn') # if not new_key in state_dict: # new_state_dict[new_key] = state_dict[key] # else: # new_state_dict[new_key] = state_dict[new_key] # if 'blocks' in key and 'norm1' in key and 'relative' not in key and 'mask' not in key: # new_key = key.replace('norm1','temporal_norm') # if not new_key in state_dict: # new_state_dict[new_key] = state_dict[key] # else: # new_state_dict[new_key] = state_dict[new_key] # state_dict = new_state_dict msg = self.load_state_dict(state_dict, strict=False) logger.info('Missing keys: {}'.format(msg.missing_keys)) logger.info('Unexpected keys: {}'.format(msg.unexpected_keys)) logger.info(f"=> loaded successfully '{self.pretrained}'") del checkpoint torch.cuda.empty_cache() elif self.pretrained is None: self.apply(_init_weights) else: raise TypeError('pretrained must be a str or None')
这段代码主要是加载预训练模型的过程。如果传入的预训练模型是一个字符串,那么就会根据该字符串的路径加载模型。加载过程中会将模型的权重进行初始化,并将预训练模型的权重加载到新的模型中。如果预训练模型是 None,则会进行默认初始化。如果传入的预训练模型不是 str 或 None,则会抛出一个 TypeError。
阅读全文