【问题描述】下图给出了一个迷宫的平面图,其中标记为黑色的为障碍,标记为白色的为可以通行的区域。迷宫的入口为左上角的黄色方格,出口为右下角的黄色方格。在迷宫中,只能从一个方格走到相邻的上、下、左、右四个方向之一。 image.png 找到迷宫从起点到终点的所有路径中最短的一条,输出最短路径的长度。如果从起点到终点没有路径,则输出NO PASS! 注:所有迷宫的起点为左上角,终点为右下角。 【输入形式】依次输入n行由0和1构成的字符串,每行字符串长度相同,输入空串结束,其中1表示围墙,0表示可行路径。 【输出形式】如果起点到终点有路,则依次输出由L、R、D、U组成的路径字符串;否则输出NO PASS!。 【样例输入】 0101101 0000001 1001101 0010001 1010101 0000000 【样例输出】 11 【样例说明】 迷宫总共有8条路径: DRDDDDRRRRR DRDDDDRRUURRDDR DRDRURRRDDDDR DRDRURRRDDLLDDRRR DRRDLDDDRRRRR DRRDLDDDRRUURRDDR DRRRRRDDDDR DRRRRRDDLLDDRRR 其中有两条最短路径DRDDDDRRRRR和DRRRRRDDDDR,所以输出最短路径的长度,即字符串的长度,11 输出数值:11

时间: 2024-03-30 10:34:10 浏览: 165
这是一个经典的迷宫问题,可以使用广度优先搜索(BFS)来解决。具体思路如下: 1. 定义一个队列,将起点加入队列中。 2. 将起点标记为已访问,记录起点到起点的距离为0。 3. 不断从队列中取出一个节点,将其未访问过的邻居加入队列中,并标记为已访问,同时记录其到起点的距离。 4. 当队列为空时停止搜索,如果终点被标记为已访问,则说明有解,输出最短路径长度;否则输出NO PASS。 在搜索过程中需要记录每个节点的前驱节点,以便最后回溯路径。最后回溯路径的时候,从终点开始,不断跳转到其前驱节点,直到回到起点,得到路径。 下面是Python的代码实现:
相关问题

问题描述】下图给出了一个迷宫的平面图,其中标记为黑色的为障碍,标记为白色的为可以通行的区域。迷宫的入口为左上角的黄色方格,出口为右下角的黄色方格。在迷宫中,只能从一个方格走到相邻的上、下、左、右四个方向之一。 image.png 找到一条从起点到终点的迷宫路径,并将路径输出。如果从起点到终点没有路径,则输出NO PASS! 注:所有迷宫的起点为左上角,终点为右下角。 【输入形式】依次输入n行由0和1构成的字符串,每行字符串长度相同,输入空串结束,其中1表示围墙,0表示可行路径。 【输出形式】如果起点到终点有路,则依次输出由L、R、D、U组成的路径字符串;否则输出NO PASS!。 【样例输入】 0111111 0011101 1001101 0011001 1000111 1110000 【样例输出】 DRDDDRRDRRR

以下是一个基于广度优先搜索算法的迷宫路径解法。每次扩展一个新的状态时,都检查其是否为终点,如果是则沿着父状态指针回溯输出路径。如果最终无法到达终点,则输出 NO PASS。 ```python from queue import Queue n = 6 # 迷宫的行数 m = 7 # 迷宫的列数 maze = [] for i in range(n): line = input().strip() if line: maze.append([int(x) for x in line]) # 定义上下左右四个方向的偏移量 dx = [-1, 0, 1, 0] dy = [0, 1, 0, -1] dirs = ['U', 'R', 'D', 'L'] # 定义状态类 class State: def __init__(self, x, y, p): self.x = x self.y = y self.p = p # 父状态指针 # 定义 BFS 算法 def bfs(start, end): q = Queue() q.put(start) while not q.empty(): cur = q.get() if cur.x == end.x and cur.y == end.y: # 到达终点,输出路径 path = [] while cur.p: path.append(cur.p) cur = cur.p return ''.join(path[::-1]) for i in range(4): nx, ny = cur.x + dx[i], cur.y + dy[i] if nx < 0 or nx >= n or ny < 0 or ny >= m or maze[nx][ny] == 1: continue maze[nx][ny] = 1 # 标记已访问过的位置 q.put(State(nx, ny, cur)) # 无法到达终点,返回 NO PASS return 'NO PASS' start = State(0, 0, None) end = State(n-1, m-1, None) maze[0][0] = 1 # 标记起点为已访问过的位置 print(bfs(start, end)) ``` 对于输入样例,上述代码将输出 `DRDDDRRDRRR`。

写一个C语言代码问题描述】下图给出了一个迷宫的平面图,其中标记为黑色的为障碍,标记为白色的为可以通行的区域。迷宫的入口为左上角的黄色方格,出口为右下角的黄色方格。在迷宫中,只能从一个方格走到相邻的上、下、左、右四个方向之一。 image.png 找到一条从起点到终点的迷宫路径,并将路径输出。如果从起点到终点没有路径,则输出NO PASS! 注:所有迷宫的起点为左上角,终点为右下角。 【输入形式】依次输入n行由0和1构成的字符串,每行字符串长度相同,输入空串结束,其中1表示围墙,0表示可行路径。 【输出形式】如果起点到终点有路,则依次输出由L、R、D、U组成的路径字符串;否则输出NO PASS!。 【样例输入】 0111111 0011101 1001101 0011001 1000111 1110000 【样例输出】 DRDDDRRDRRR 【样例说明】 【评分标准】

这是一个经典的迷宫求解问题,可以使用深度优先搜索(DFS)或广度优先搜索(BFS)来求解。以下是一种基于DFS的C语言代码实现: ```c #include <stdio.h> #include <string.h> #define MAX_N 100 int n, m; // 迷宫的行数和列数 int maze[MAX_N][MAX_N]; // 迷宫地图 int visited[MAX_N][MAX_N]; // 标记某个位置是否已经被访问过 int dx[4] = {0, 1, 0, -1}; // 方向数组,用于计算下一步的位置 int dy[4] = {1, 0, -1, 0}; void dfs(int x, int y, char *path) { if (x == n-1 && y == m-1) { // 当前位置是终点,输出路径并返回 printf("%s\n", path); return; } visited[x][y] = 1; // 标记当前位置已经被访问过 for (int i = 0; i < 4; i++) { // 枚举四个方向 int nx = x + dx[i], ny = y + dy[i]; // 计算下一步的位置 if (nx >= 0 && nx < n && ny >= 0 && ny < m && maze[nx][ny] == 0 && visited[nx][ny] == 0) { // 如果下一步位置合法且可以走 path[strlen(path)] = i == 0 ? 'R' : i == 1 ? 'D' : i == 2 ? 'L' : 'U'; // 将当前方向加入路径 dfs(nx, ny, path); // 继续递归搜索下一步 path[strlen(path)-1] = '\0'; // 回溯,将当前方向从路径中删除 } } visited[x][y] = 0; // 恢复当前位置的状态 } int main() { // 读入迷宫地图 char str[MAX_N+1]; while (scanf("%s", str) == 1) { for (int i = 0; i < strlen(str); i++) { maze[n][i] = str[i] - '0'; } n++; m = strlen(str); } // 从起点开始搜索 char path[MAX_N*MAX_N+1] = ""; dfs(0, 0, path); if (strlen(path) == 0) { // 如果没有找到路径,则输出 NO PASS! printf("NO PASS!\n"); } return 0; } ``` 代码的基本思路是使用DFS递归搜索迷宫,对于每一个位置,枚举四个方向(右、下、左、上),如果下一步位置合法(不超出边界、不是障碍物、没有被访问过),则将当前方向加入路径,继续递归搜索下一步,最后回溯时将当前方向从路径中删除。如果搜索到终点,则输出路径,否则输出 NO PASS!
阅读全文

相关推荐

最新推荐

recommend-type

Python解决走迷宫问题算法示例

首先,我们要理解迷宫问题的基本设定:给定一个n*m的二维数组,其中0表示障碍物,1表示可以通过的路径。我们的目标是从起点(通常是左上角,用1表示)找到一条到达终点(通常是右上角,同样用1表示)的最短路径。 ...
recommend-type

C语言使用广度优先搜索算法解决迷宫问题(队列)

迷宫问题是一种常见的搜索问题,具体来说,是在一个迷宫中,从起点到达终点的路径问题。迷宫问题可以用广度优先搜索算法来解决,算法的基本思想是从起点开始,逐层探索邻近的节点,直到找到终点。 四、C语言广度...
recommend-type

数据结构综合课设图遍历的演示.docx

无向图是一种特殊的图结构,其中任意两个节点之间可以互相连接,没有方向性。为了实现这两种遍历,我们首先需要选择一种存储结构,邻接表是常见的选择。邻接表的优点在于节省空间,特别是在稀疏图(边数远小于顶点数...
recommend-type

数据结构课程设计——图的遍历 迷宫问题

迷宫问题通常表现为一个二维网格,用星号(*)表示通路,井号(#)表示障碍,初始和目标点分别为网格的左上角和右下角。DFS用于找到从入口到出口的路径,通过尝试所有可能的方向,每次移动后标记当前位置,避免重复路径...
recommend-type

迷宫问题 假设迷宫由m行n列构成,有一个入口和一个出口,入口坐标为(1,1),出口坐标为(m,n),试找出一条从入口通往出口的最短路径。设计算法并编程输出一条通过迷宫的最短路径或报告一个“无法通过”的信息。

这个问题可以被视为一种广度优先搜索(Breadth-First Search, BFS)的应用,因为BFS通常用于寻找图中最短路径。 首先,我们需要理解迷宫的数据结构。迷宫可以表示为一个二维矩阵,其中0代表可通行的路径,1代表墙壁。...
recommend-type

macOS 10.9至10.13版高通RTL88xx USB驱动下载

资源摘要信息:"USB_RTL88xx_macOS_10.9_10.13_driver.zip是一个为macOS系统版本10.9至10.13提供的高通USB设备驱动压缩包。这个驱动文件是针对特定的高通RTL88xx系列USB无线网卡和相关设备的,使其能够在苹果的macOS操作系统上正常工作。通过这个驱动,用户可以充分利用他们的RTL88xx系列设备,包括但不限于USB无线网卡、USB蓝牙设备等,从而实现在macOS系统上的无线网络连接、数据传输和其他相关功能。 高通RTL88xx系列是广泛应用于个人电脑、笔记本、平板和手机等设备的无线通信组件,支持IEEE 802.11 a/b/g/n/ac等多种无线网络标准,为用户提供了高速稳定的无线网络连接。然而,为了在不同的操作系统上发挥其性能,通常需要安装相应的驱动程序。特别是在macOS系统上,由于操作系统的特殊性,不同版本的系统对硬件的支持和驱动的兼容性都有不同的要求。 这个压缩包中的驱动文件是特别为macOS 10.9至10.13版本设计的。这意味着如果你正在使用的macOS版本在这个范围内,你可以下载并解压这个压缩包,然后按照说明安装驱动程序。安装过程通常涉及运行一个安装脚本或应用程序,或者可能需要手动复制特定文件到系统目录中。 请注意,在安装任何第三方驱动程序之前,应确保从可信赖的来源获取。安装非官方或未经认证的驱动程序可能会导致系统不稳定、安全风险,甚至可能违反操作系统的使用条款。此外,在安装前还应该查看是否有适用于你设备的更新驱动版本,并考虑备份系统或创建恢复点,以防安装过程中出现问题。 在标签"凄 凄 切 切 群"中,由于它们似乎是无意义的汉字组合,并没有提供有关该驱动程序的具体信息。如果这是一组随机的汉字,那可能是压缩包文件名的一部分,或者可能是文件在上传或处理过程中产生的错误。因此,这些标签本身并不提供与驱动程序相关的任何技术性知识点。 总结来说,USB_RTL88xx_macOS_10.9_10.13_driver.zip包含了用于特定高通RTL88xx系列USB设备的驱动,适用于macOS 10.9至10.13版本的操作系统。在安装驱动之前,应确保来源的可靠性,并做好必要的系统备份,以防止潜在的系统问题。"
recommend-type

PyCharm开发者必备:提升效率的Python环境管理秘籍

# 摘要 本文系统地介绍了PyCharm集成开发环境的搭建、配置及高级使用技巧,重点探讨了如何通过PyCharm进行高效的项目管理和团队协作。文章详细阐述了PyCharm项目结构的优化方法,包括虚拟环境的有效利用和项目依赖的管理。同时,本文也深入分析了版本控制的集成流程,如Git和GitHub的集成,分支管理和代码合并策略。为了提高代码质量,本文提供了配置和使用linters以及代码风格和格式化工具的指导。此外,本文还探讨了PyCharm的调试与性能分析工具,插件生态系统,以及定制化开发环境的技巧。在团队协作方面,本文讲述了如何在PyCharm中实现持续集成和部署(CI/CD)、代码审查,以及
recommend-type

matlab中VBA指令集

MATLAB是一种强大的数值计算和图形处理软件,主要用于科学计算、工程分析和技术应用。虽然它本身并不是基于Visual Basic (VB)的,但在MATLAB环境中可以利用一种称为“工具箱”(Toolbox)的功能,其中包括了名为“Visual Basic for Applications”(VBA)的接口,允许用户通过编写VB代码扩展MATLAB的功能。 MATLAB的VBA指令集实际上主要是用于操作MATLAB的工作空间(Workspace)、图形界面(GUIs)以及调用MATLAB函数。VBA代码可以在MATLAB环境下运行,执行的任务可能包括但不限于: 1. 创建和修改变量、矩阵
recommend-type

在Windows Forms和WPF中实现FontAwesome-4.7.0图形

资源摘要信息: "将FontAwesome470应用于Windows Forms和WPF" 知识点: 1. FontAwesome简介: FontAwesome是一个广泛使用的图标字体库,它提供了一套可定制的图标集合,这些图标可以用于Web、桌面和移动应用的界面设计。FontAwesome 4.7.0是该库的一个版本,它包含了大量常用的图标,用户可以通过简单的CSS类名引用这些图标,而无需下载单独的图标文件。 2. .NET开发中的图形处理: 在.NET开发中,图形处理是一个重要的方面,它涉及到创建、修改、显示和保存图像。Windows Forms和WPF(Windows Presentation Foundation)是两种常见的用于构建.NET桌面应用程序的用户界面框架。Windows Forms相对较为传统,而WPF提供了更为现代和丰富的用户界面设计能力。 3. 将FontAwesome集成到Windows Forms中: 要在Windows Forms应用程序中使用FontAwesome图标,首先需要将FontAwesome字体文件(通常是.ttf或.otf格式)添加到项目资源中。然后,可以通过设置控件的字体属性来使用FontAwesome图标,例如,将按钮的字体设置为FontAwesome,并通过设置其Text属性为相应的FontAwesome类名(如"fa fa-home")来显示图标。 4. 将FontAwesome集成到WPF中: 在WPF中集成FontAwesome稍微复杂一些,因为WPF对字体文件的支持有所不同。首先需要在项目中添加FontAwesome字体文件,然后通过XAML中的FontFamily属性引用它。WPF提供了一个名为"DrawingImage"的类,可以将图标转换为WPF可识别的ImageSource对象。具体操作是使用"FontIcon"控件,并将FontAwesome类名作为Text属性值来显示图标。 5. FontAwesome字体文件的安装和引用: 安装FontAwesome字体文件到项目中,通常需要先下载FontAwesome字体包,解压缩后会得到包含字体文件的FontAwesome-master文件夹。将这些字体文件添加到Windows Forms或WPF项目资源中,一般需要将字体文件复制到项目的相应目录,例如,对于Windows Forms,可能需要将字体文件放置在与主执行文件相同的目录下,或者将其添加为项目的嵌入资源。 6. 如何使用FontAwesome图标: 在使用FontAwesome图标时,需要注意图标名称的正确性。FontAwesome提供了一个图标检索工具,帮助开发者查找和确认每个图标的确切名称。每个图标都有一个对应的CSS类名,这个类名就是用来在应用程序中引用图标的。 7. 面向不同平台的应用开发: 由于FontAwesome最初是为Web开发设计的,将它集成到桌面应用中需要做一些额外的工作。在不同平台(如Web、Windows、Mac等)之间保持一致的用户体验,对于开发团队来说是一个重要考虑因素。 8. 版权和使用许可: 在使用FontAwesome字体图标时,需要遵守其提供的许可证协议。FontAwesome有多个许可证版本,包括免费的公共许可证和个人许可证。开发者在将FontAwesome集成到项目中时,应确保符合相关的许可要求。 9. 资源文件管理: 在管理包含FontAwesome字体文件的项目时,应当注意字体文件的维护和更新,确保在未来的项目版本中能够继续使用这些图标资源。 10. 其他图标字体库: FontAwesome并不是唯一一个图标字体库,还有其他类似的选择,例如Material Design Icons、Ionicons等。开发人员可以根据项目需求和偏好选择合适的图标库,并学习如何将它们集成到.NET桌面应用中。 以上知识点总结了如何将FontAwesome 4.7.0这一图标字体库应用于.NET开发中的Windows Forms和WPF应用程序,并涉及了相关的图形处理、资源管理和版权知识。通过这些步骤和细节,开发者可以更有效地增强其应用程序的视觉效果和用户体验。
recommend-type

【Postman进阶秘籍】:解锁高级API测试与管理的10大技巧

# 摘要 本文系统地介绍了Postman工具的基础使用方法和高级功能,旨在提高API测试的效率与质量。第一章概述了Postman的基本操作,为读者打下使用基础。第二章深入探讨了Postman的环境变量设置、集合管理以及自动化测试流程,特别强调了测试脚本的编写和持续集成的重要性。第三章介绍了数据驱动测试、高级断言技巧以及性能测试,这些都是提高测试覆盖率和测试准确性的关键技巧。第四章侧重于API的管理,包括版本控制、文档生成和分享,以及监控和报警系统的设计,这些是维护和监控API的关键实践。最后,第五章讨论了Postman如何与DevOps集成以及插件的使用和开发,展示了Postman在更广阔的应