79999_iter.7z

时间: 2023-05-03 09:03:15 浏览: 88
79999_iter.7z是一个压缩文件,扩展名为.7z。它可能包含了多个文件或文件夹,并经过了压缩以减小文件大小。压缩文件的名称中的“79999_iter”可能是指在对该文件进行压缩时使用的迭代次数。一般来说,迭代次数越高,则压缩文件的压缩率也会越高,但同时也会消耗更多的时间和计算资源。要在计算机上打开该文件,需要先下载并安装相应的解压缩软件,如WinRAR或7-Zip等。然后,使用该软件打开该文件并提取其中的内容。提取后的文件可以是文本、图像、音频或视频等各种类型的文件。因此,在使用79999_iter.7z之前,确保已经了解了该文件的来源,并检查其中是否包含恶意软件或病毒。同时,也要确保计算机上已经安装了最新的病毒软件,并对解压缩后的文件进行全面的安全扫描。
相关问题

import sys from hmmlearn.hmm import MultinomialHMM import numpy as np dice_num = 3 x_num = 8 dice_hmm = MultinomialHMM(n_components=3, n_features=x_num, n_iter=100, params="ste", init_params="e") dice_hmm.startprob_ = np.ones(3) / 3.0 dice_hmm.transmat_ = np.ones((3, 3)) / 3.0 dice_hmm.emissionprob_ = np.array([[1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 0.0, 0.0], [1.0, 1.0, 1.0, 1.0, 0.0, 0.0, 0.0, 0.0], [1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0]]) dice_hmm.emissionprob_ /= dice_hmm.emissionprob_.sum(axis=1)[:, np.newaxis] X = np.array([[1], [6], [3], [5], [2], [7], [3], [5], [2], [4], [3], [6], [1], [5], [4]]) Z = dice_hmm.decode(X) # 问题A logprob = dice_hmm.score(X) # 问题B # 问题C x_next = np.dot(dice_hmm.transmat_, dice_hmm.emissionprob_) print("state: ", Z) print("logprob: ", logprob) print("prob of x_next: ", x_next)

这段代码是使用HMM(隐马尔可夫模型)来模拟掷骰子的过程,其中: - 三个骰子被视为三个隐藏状态(hidden states),每个骰子有八个可能的结果; - startprob_ 表示初始状态的概率分布,即开始时每个骰子被选中的概率相等; - transmat_ 表示状态转移矩阵,即从一个状态转移到另一个状态的概率; - emissionprob_ 表示发射概率矩阵,即在一个状态下,产生每个可能结果的概率; - X 是一组观察序列,即投掷骰子的结果; - Z 是观察序列对应的状态序列,即根据观察序列推断出的骰子的选择序列; - logprob 是观察序列的对数概率,即给定模型参数下,观察序列出现的概率的对数; - x_next 是下一次投掷的结果可能性分布,即当前状态下,下一个状态的每个结果的概率。 具体问题如下: A. Z 的含义是什么? B. logprob 的含义是什么? C. x_next 的含义是什么?

输入x_train.T和y_train.T输出w,b的对数几率模型python代码

以下是基于梯度下降法的对数几率回归模型的Python代码: ```python import numpy as np # 定义对几率回归模型 class LogisticRegression: def __init__(self, lr=0.01, num_iter=100000, fit_intercept=True, verbose=False): self.lr = lr self.num = num_iter self.fit_intercept = fit_intercept self.verbose = verbose def __add_intercept(self, X): intercept = np.ones((X.shape[0], 1)) return np.concatenate((intercept, X), axis=1) def __sigmoid(self, z): return 1 / (1 + np.exp(-z)) def __loss(self, h, y): return (-y * np.log(h) - (1 - y) * np.log(1 - h)).mean() def fit(self, X, y): if self.fit_intercept: X = self.__add_intercept(X) # 初始化参数w和b self.w = np.zeros(X.shape[1]) for i in range(self.num_iter): z = np.dot(X, self.w) h = self.__sigmoid(z) gradient = np.dot(X.T, (h - y)) / y.size self.w -= self.lr * gradient if self.verbose and i % 10000 == 0: z = np.dot(X, self.w) h = self.__sigmoid(z) print(f'loss: {self.__loss(h, y)}\t') def predict_proba(self, X): if self.fit_intercept: X = self.__add_intercept(X) return self.__sigmoid(np.dot(X, self.w)) def predict(self, X, threshold=0.5): return self.predict_proba(X) >= threshold ``` 其中,输入参数 `x_train.T` 和 `y_train.T` 代表训练数据的特征和标签,`w` 和 `b` 分别为模型的参数,对应于上述代码中的 `self.w`。需要注意的是,该代码中的特征数据 `X` 需要增加一维常数项,即在数据的第一列插入全为 1 的一列。

相关推荐

***************************master_pro set pp/1*1000/; set p(pp); set pi(pp); pi('1')=yes; p('1')=yes; parameter cp(pp)/ 1 100 /; parameter tp(pp)/ 1 0 /; parameter TM/10/; positive variable y(pp); variable z_master; equation master_obj_fuc; equation master_travel_const; equation master_cob_const; master_obj_fuc.. z_master=e=sum(p,cp(p)*y(p)); master_travel_const.. sum(p,tp(p)*y(p))=l=TM; master_cob_const.. sum(p,y(p))=e=1; model master_pro/master_obj_fuc,master_travel_const,master_cob_const/; *************************************sub_pro set i/1*6/; alias(i,j); set i_o(i)/1/; set i_d(i)/6/; set i_m(i)/2*5/; parameter c(i,j)/ 1.2 2 1.3 9 2.4 2 2.5 3 3.2 1 3.4 5 3.5 12 4.5 4 4.6 2 5.6 2 /; parameter t(i,j)/ 1.2 9 1.3 1 2.4 2 2.5 4 3.2 2 3.4 7 3.5 3 4.5 7 4.6 8 5.6 2 /; parameter w1; parameter w2; binary variable x(i,j); variable z_sub; equation sub_obj_fuc; equation sub_start_const(i_o); equation sub_end_const(i_d); equation sub_mid_const(i_m); sub_obj_fuc.. z_sub=e=sum((i,j),(c(i,j)-w1*t(i,j))*x(i,j))-w2; sub_start_const(i_o).. sum(j$c(i_o,j),x(i_o,j))=e=1; sub_end_const(i_d).. sum(j$c(j,i_d),x(j,i_d))=e=1; sub_mid_const(i_m).. sum(j$c(j,i_m),x(j,i_m))=e=sum(j$c(i_m,j),x(i_m,j)); model sub_pro/sub_obj_fuc,sub_start_const,sub_end_const,sub_mid_const/; *****************************************xunhuan set iter/1*6/; parameter rN/-1/; parameter cp_new; parameter tp_new; parameter results(iter,*); loop(iter$(rN<0), solve master_pro using LP minimazing z_master; w1=master_travel_const.m; w2=master_cob_const.m; solve sub_pro using MIP minimazing z_sub; cp_new=sum((i,j),c(i,j)*x.l(i,j)); tp_new=sum((i,j),t(i,j)*x.l(i,j)); rN=z_sub.l; results(iter,'z')=z_master.l; results(iter,p)=y.l(p); results(iter,'w1')=w1; results(iter,'w2')=w2; results(iter,'cp_new')=cp_new; results(iter,'tp_new')=tp_new; results(iter,'rN')=rN; pi(pp)=pi(pp-1); cp(pi)=cp_new; tp(pi)=tp_new; p(pi)=yes; ); display results;

void Trajectory::predict_box( uint idx_duration, std::vector<Box>& vec_box, std::vector<Eigen::MatrixXf, Eigen::aligned_allocatorEigen::MatrixXf>& vec_cova, bool& is_replay_frame) { vec_box.clear(); vec_cova.clear(); if (is_replay_frame) { for (auto iter = map_current_box_.begin(); iter != map_current_box_.end(); ++iter) { Destroy(iter->second.track_id()); } m_track_start_.Clear_All(); NU = 0; is_replay_frame = false; } Eigen::MatrixXf F_temp = F_; F_temp(0, 1) = idx_duration * F_(0, 1); F_temp(2, 3) = idx_duration * F_(2, 3); F_temp(4, 5) = idx_duration * F_(4, 5); uint64_t track_id; Eigen::Matrix<float, 6, 1> state_lidar; Eigen::Matrix<float, 6, 6> P_kkminus1; Eigen::Matrix3f S_temp; for (auto beg = map_current_box_.begin(); beg != map_current_box_.end(); ++beg) { float t = (fabs(0.1 - beg->second.frame_duration()) > 0.05) ? 0.1 : 0.2 - beg->second.frame_duration(); F_temp(0, 1) = t; F_temp(2, 3) = t; F_temp(4, 5) = t; // uint64_t timestamp_new = beg->second.timestamp() + uint(10.0 * t * NANO_FRAME); track_id = beg->first; state_lidar = F_temp * map_lidar_state_.at(track_id); P_kkminus1 = F_temp * map_lidar_cova_.at(track_id) * F_temp.transpose() + Q_lidar_; S_temp = H_ * P_kkminus1 * H_.transpose() + R_lidar_; float psi_new = (1 - P_D_ * P_G_) * beg->second.psi() / (1 - P_D_ * P_G_ * beg->second.psi()); Box bbox = beg->second; bbox.set_psi(psi_new); // bbox.set_timestamp(timestamp_new); bbox.set_position_x(state_lidar(0)); bbox.set_position_y(state_lidar(2)); bbox.set_position_z(state_lidar(4)); bbox.set_speed_x(state_lidar(1)); bbox.set_speed_y(state_lidar(3)); bbox.set_speed_z(state_lidar(5)); vec_box.emplace_back(bbox); vec_cova.emplace_back(S_temp); } AINFO << "Finish predict with duration frame num: " << idx_duration; } 代码解读

import numpy as np from sklearn.datasets import load_iris from sklearn.model_selection import train_test_split import matplotlib.pyplot as plt # 加载 iris 数据 iris = load_iris() # 只选取两个特征和两个类别进行二分类 X = iris.data[(iris.target==0)|(iris.target==1), :2] y = iris.target[(iris.target==0)|(iris.target==1)] # 将标签转化为 0 和 1 y[y==0] = -1 # 将数据集分为训练集和测试集 X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42) # 实现逻辑回归算法 class LogisticRegression: def __init__(self, lr=0.01, num_iter=100000, fit_intercept=True, verbose=False): self.lr = lr self.num_iter = num_iter self.fit_intercept = fit_intercept self.verbose = verbose def __add_intercept(self, X): intercept = np.ones((X.shape[0], 1)) return np.concatenate((intercept, X), axis=1) def __sigmoid(self, z): return 1 / (1 + np.exp(-z)) def __loss(self, h, y): return (-y * np.log(h) - (1 - y) * np.log(1 - h)).mean() def fit(self, X, y): if self.fit_intercept: X = self.__add_intercept(X) # 初始化参数 self.theta = np.zeros(X.shape[1]) for i in range(self.num_iter): # 计算梯度 z = np.dot(X, self.theta) h = self.__sigmoid(z) gradient = np.dot(X.T, (h - y)) / y.size # 更新参数 self.theta -= self.lr * gradient # 打印损失函数 if self.verbose and i % 10000 == 0: z = np.dot(X, self.theta) h = self.__sigmoid(z) loss = self.__loss(h, y) print(f"Loss: {loss} \t") def predict_prob(self, X): if self.fit_intercept: X = self.__add_intercept(X) return self.__sigmoid(np.dot(X, self.theta)) def predict(self, X, threshold=0.5): return self.predict_prob(X) >= threshold # 训练模型 model = LogisticRegressio

补全代码public class Mongo{ public static void main( String args[] ){ try{ MongoClient mongoClient = new MongoClient("Iocalhost",27017); MongoDatabase mongoDatabase = mongoClient.getDatabase(" mydb2"); mongoDatabase.createCollection("_ (1)_ "); MongoC ollection<Document> collection = mongoDatabase.getCollection("test2"); Document document1 = new Document(; document1._ (2)_ document1.append(" name","Xiaoming"); document1.append(" sex",' man"); document1.append(" age" ,21); Document document2 = new Document(); document2.append("_ id","2"); document2.append("name","Xiaohong"); document2.append(" sex' ;' woman"); document2.append(" age" ,20); Document document3 = new Document0; document3.append(" id","3"); document3.append("name","Xiaoliang"); document3.append("sex"," man"); document3.append(" age" ,22); List <Document> documents = new ArrayList <Document>0; (3)__ ; documents.add(document2); documents. add(document3); collection.__ (4)__ ; Findlterable <Document> iter =__ (5)__ ; System.out.printn("文档插入结果如下: "); iter.forEach(new Block <Document>() { public void apply(Document _doc) { System.out.printIn( _doc.tolson0); ); collection.updateMany(Filters.eq( 'name", (6)__ ), collection.updateMany(Filters.eq("name",___ (6)_ ), new Document(" $set",new Document(" age" ,3))); Findlterable <Document> findlterable = collection.find0; MongoCursor<Document> mongoCursor =__ (Z)__ ; System.out.printIn("更新后文档内容如下: "); while(mongoCursor.hasNext0){ System.out.println(mongoCursor.next0); }; collection.deleteMany ( (8)_ );

最新推荐

recommend-type

node-v0.8.10-sunos-x64.tar.gz

Node.js,简称Node,是一个开源且跨平台的JavaScript运行时环境,它允许在浏览器外运行JavaScript代码。Node.js于2009年由Ryan Dahl创立,旨在创建高性能的Web服务器和网络应用程序。它基于Google Chrome的V8 JavaScript引擎,可以在Windows、Linux、Unix、Mac OS X等操作系统上运行。 Node.js的特点之一是事件驱动和非阻塞I/O模型,这使得它非常适合处理大量并发连接,从而在构建实时应用程序如在线游戏、聊天应用以及实时通讯服务时表现卓越。此外,Node.js使用了模块化的架构,通过npm(Node package manager,Node包管理器),社区成员可以共享和复用代码,极大地促进了Node.js生态系统的发展和扩张。 Node.js不仅用于服务器端开发。随着技术的发展,它也被用于构建工具链、开发桌面应用程序、物联网设备等。Node.js能够处理文件系统、操作数据库、处理网络请求等,因此,开发者可以用JavaScript编写全栈应用程序,这一点大大提高了开发效率和便捷性。 在实践中,许多大型企业和组织已经采用Node.js作为其Web应用程序的开发平台,如Netflix、PayPal和Walmart等。它们利用Node.js提高了应用性能,简化了开发流程,并且能更快地响应市场需求。
recommend-type

【课程设计】实现的金融风控贷款违约预测python源码.zip

【课程设计】实现的金融风控贷款违约预测python源码.zip
recommend-type

zigbee-cluster-library-specification

最新的zigbee-cluster-library-specification说明文档。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

实现实时数据湖架构:Kafka与Hive集成

![实现实时数据湖架构:Kafka与Hive集成](https://img-blog.csdnimg.cn/img_convert/10eb2e6972b3b6086286fc64c0b3ee41.jpeg) # 1. 实时数据湖架构概述** 实时数据湖是一种现代数据管理架构,它允许企业以低延迟的方式收集、存储和处理大量数据。与传统数据仓库不同,实时数据湖不依赖于预先定义的模式,而是采用灵活的架构,可以处理各种数据类型和格式。这种架构为企业提供了以下优势: - **实时洞察:**实时数据湖允许企业访问最新的数据,从而做出更明智的决策。 - **数据民主化:**实时数据湖使各种利益相关者都可
recommend-type

云原生架构与soa架构区别?

云原生架构和SOA架构是两种不同的架构模式,主要有以下区别: 1. 设计理念不同: 云原生架构的设计理念是“设计为云”,注重应用程序的可移植性、可伸缩性、弹性和高可用性等特点。而SOA架构的设计理念是“面向服务”,注重实现业务逻辑的解耦和复用,提高系统的灵活性和可维护性。 2. 技术实现不同: 云原生架构的实现技术包括Docker、Kubernetes、Service Mesh等,注重容器化、自动化、微服务等技术。而SOA架构的实现技术包括Web Services、消息队列等,注重服务化、异步通信等技术。 3. 应用场景不同: 云原生架构适用于云计算环境下的应用场景,如容器化部署、微服务
recommend-type

JSBSim Reference Manual

JSBSim参考手册,其中包含JSBSim简介,JSBSim配置文件xml的编写语法,编程手册以及一些应用实例等。其中有部分内容还没有写完,估计有生之年很难看到完整版了,但是内容还是很有参考价值的。
recommend-type

"互动学习:行动中的多样性与论文攻读经历"

多样性她- 事实上SCI NCES你的时间表ECOLEDO C Tora SC和NCESPOUR l’Ingén学习互动,互动学习以行动为中心的强化学习学会互动,互动学习,以行动为中心的强化学习计算机科学博士论文于2021年9月28日在Villeneuve d'Asq公开支持马修·瑟林评审团主席法布里斯·勒菲弗尔阿维尼翁大学教授论文指导奥利维尔·皮耶昆谷歌研究教授:智囊团论文联合主任菲利普·普雷教授,大学。里尔/CRISTAL/因里亚报告员奥利维耶·西格德索邦大学报告员卢多维奇·德诺耶教授,Facebook /索邦大学审查员越南圣迈IMT Atlantic高级讲师邀请弗洛里安·斯特鲁布博士,Deepmind对于那些及时看到自己错误的人...3谢谢你首先,我要感谢我的两位博士生导师Olivier和Philippe。奥利维尔,"站在巨人的肩膀上"这句话对你来说完全有意义了。从科学上讲,你知道在这篇论文的(许多)错误中,你是我可以依
recommend-type

实现实时监控告警系统:Kafka与Grafana整合

![实现实时监控告警系统:Kafka与Grafana整合](https://imgconvert.csdnimg.cn/aHR0cHM6Ly9tbWJpei5xcGljLmNuL21tYml6X2pwZy9BVldpY3ladXVDbEZpY1pLWmw2bUVaWXFUcEdLT1VDdkxRSmQxZXB5R1lxaWNlUjA2c0hFek5Qc3FyRktudFF1VDMxQVl3QTRXV2lhSWFRMEFRc0I1cW1ZOGcvNjQw?x-oss-process=image/format,png) # 1.1 Kafka集群架构 Kafka集群由多个称为代理的服务器组成,这
recommend-type

数字舵机控制程序流程图

以下是数字舵机控制程序的流程图: ![数字舵机控制程序流程图](https://i.imgur.com/2fgKUQs.png) 1. 初始化引脚:设置舵机控制引脚为输出模式。 2. 初始化舵机:将舵机控制引脚输出的PWM信号设置为初始值,初始化舵机的位置。 3. 接收控制信号:通过串口或者其他方式接收舵机控制信号。 4. 解析控制信号:解析接收到的控制信号,确定舵机需要转动的角度和方向。 5. 转动舵机:根据解析后的控制信号,设置舵机控制引脚输出的PWM信号的占空比,使舵机转动到目标位置。 6. 延时:为了保证舵机转动到目标位置后稳定,需要延时一段时间。 7. 返回接收控制信