timg = double(img); dim = size(img); h = sobel_kernel(15); sobelx = imfilter(timg,h'); sobely = imfilter(timg,h); absgraddir = atan(abs(sobely) ./ abs(sobelx)); binary_output = zeros(dim,'uint8'); binary_output((absgraddir > thresh(1)) & (absgraddir <= thresh(2))) = uint8(255);解释

时间: 2024-01-17 15:03:09 浏览: 29
这段代码是一段MATLAB代码,主要是对图像进行Sobel边缘检测,并将检测结果转化为二值图像。具体解释如下: 1. 将输入的图像img转换为双精度型timg,并获取图像的尺寸dim。 2. 定义一个Sobel卷积核h,大小为15,用于进行边缘检测。 3. 分别用h的转置和h对timg进行卷积,得到x方向和y方向的边缘强度sobelx和sobely。 4. 计算每个像素点的梯度方向absgraddir,即arctan(|sobely|/|sobelx|)。 5. 根据输入的阈值thresh,将absgraddir大于thresh(1)且小于等于thresh(2)的像素点设置为255,其余像素点设置为0,得到二值图像binary_output。 需要注意的是,这段代码中的边缘检测算法是基于Sobel算子的,而阈值thresh是一个长度为2的数组,用于控制二值化的阈值范围。
相关问题

bin_img = np.zeros(shape=timg.shape, dtype=np.uint8)

这段代码的作用是创建一个与`timg`具有相同形状和数据类型的全零数组`bin_img`。`shape`参数指定了数组的形状,`dtype`参数指定了数组元素的数据类型。在这里,`np.uint8`表示无符号8位整数,即像素值范围在0到255之间。通常,这个数组会被用来存储二值化后的图像,其中像素值为0或255。

def get_binary_img(timg): bin_img = np.zeros(shape=timg.shape, dtype=np.uint8) h = timg.shape[0] # 表示y的大小 w = timg.shape[1] # 表示x的大小 # print(" h = {} w = {}".format(h,w)) for i in range(h): # 从上到下 for j in range(w): bin_img[i][j] = 255 if timg[i][j] > 200 else 0 return bin_img

这段代码实现了一个简单的图像二值化函数`get_binary_img`,其输入参数`timg`为一张灰度图像。函数返回一个二值化后的图像`bin_img`,其中像素值为0或255。 具体实现为,先创建一个与输入图像`timg`具有相同形状和数据类型的全零数组`bin_img`,然后遍历输入图像的每个像素,将其灰度值与阈值200进行比较,如果大于阈值则将对应的二值图像像素置为255,否则置为0。最后返回二值化后的图像`bin_img`。

相关推荐

改进下面代码使其输出特征连线图和拼接图import cv2 import numpy as np #加载两张需要拼接的图片: img1 = cv2.imread('men3.jpg') img2 = cv2.imread('men4.jpg') #将两张图片转换为灰度图像: gray1 = cv2.cvtColor(img1, cv2.COLOR_BGR2GRAY) gray2 = cv2.cvtColor(img2, cv2.COLOR_BGR2GRAY) #使用Shi-Tomasi角点检测器找到两张图片中的特征点: # 设定Shi-Tomasi角点检测器的参数 feature_params = dict(maxCorners=100, qualityLevel=0.3, minDistance=7, blockSize=7) # 检测特征点 p1 = cv2.goodFeaturesToTrack(gray1, **feature_params) p2 = cv2.goodFeaturesToTrack(gray2, **feature_params) #使用Lucas-Kanade光流法计算特征点的移动向量: # 设定Lucas-Kanade光流法的参数 lk_params = dict(winSize=(15, 15), maxLevel=2, criteria=(cv2.TERM_CRITERIA_EPS | cv2.TERM_CRITERIA_COUNT, 10, 0.03)) # 计算特征点的移动向量 p1, st, err = cv2.calcOpticalFlowPyrLK(gray1, gray2, p1, None, **lk_params) p2, st, err = cv2.calcOpticalFlowPyrLK(gray2, gray1, p2, None, **lk_params) #计算两张图片的变换矩阵: # 使用RANSAC算法计算变换矩阵 M, mask = cv2.findHomography(p1, p2, cv2.RANSAC, 5.0) #将两张图片拼接成一张: # 计算拼接后的图像大小 h, w = img1.shape[:2] pts = np.array([[0, 0], [0, h - 1], [w - 1, h - 1], [w - 1, 0]], dtype=np.float32).reshape(-1, 1, 2) dst = cv2.perspectiveTransform(pts, M) xmin, ymin = np.int32(dst.min(axis=0).ravel() - 0.5) xmax, ymax = np.int32(dst.max(axis=0).ravel() + 0.5) tx, ty = -xmin, -ymin H, W = xmax - xmin, ymax - ymin # 计算拼接后的图像 timg = np.zeros((H, W, 3), dtype=np.uint8) timg[ty:ty + h, tx:tx + w] = img1 new_p2 = cv2.perspectiveTransform(p2, M) timg = cv2.polylines(timg, [np.int32(new_p2 + (tx, ty))], True, (0, 255, 255), 1, cv2.LINE_AA)

from tkinter import * import math, time from PIL import Image, ImageTk # 定义时针上的刻度 1~12 def points ( ) : # 绘制表盘数字 for i in range ( 1, 13 ) : # 表盘中心的位置是 200,200 , 由此计算刻度的位置 x = 200 + 120 * math.sin ( 2 * math.pi * i / 12 ) y = 200 - 120 * math.cos ( 2 * math.pi * i / 12 ) canvas.create_text ( x, y, text=i, font= ( ' 黑体 ' , 18 ) , fill= ' Navy ' ) # 颜色是海军蓝 # 绘制表盘刻度 for i in range ( 1, 61 ) : # 定义时针刻度 ( 1~12h ) if i % 5 == 0: # 5 的倍数要长一些 r = 150 else: r = 145 x = 200 + 140 * math.sin ( 2 * math.pi * i / 60 ) y = 200 - 140 * math.cos ( 2 * math.pi * i / 60 ) x2 = 200 + r * math.sin ( 2 * math.pi * i / 60 ) y2 = 200 - r * math.cos ( 2 * math.pi * i / 60 ) canvas.create_line ( x, y, x2, y2 ) # 定义指针 def createline ( radius, line_width, rad ) : x = 200 + radius * math.sin ( rad ) y = 200 - radius * math.cos ( rad ) i = canvas.create_line ( 200, 200, x, y, width=line_width, fill= ' black ' ) List.append ( i ) root = Tk ( ) root.title ( " 小狗时钟 " ) root.geometry ( " 400x500 " ) canvas = Canvas ( root, width=400, height=500 ) canvas.pack ( ) # 生成外圆 , 圆内填充颜色是白色 canvas.create_oval ( 50, 50, 350, 350, fill= ' white ' ) # 绘制表盘中央的小狗图片 path1 = " timg.jpg " load = Image.open ( path1 ) render = ImageTk.PhotoImage ( load ) canvas.create_image ( 195, 200, image=render ) # 这个位置是自己调的 List = [ ] # 用来记录绘制的图形编号 points ( )。上述代码中详细解释points()

最新推荐

recommend-type

python 使用opencv 把视频分割成图片示例

im = cv2.imread("timg.jpg", cv2.IMREAD_GRAYSCALE) cv2.imwrite('res.jpg', im) # 初始化VideoCapture对象,参数是视频文件路径 cap = cv2.VideoCapture("1EF5013E37956E7EF2D5F935B6107F34.mp4") # 使用while...
recommend-type

BSC关键绩效财务与客户指标详解

BSC(Balanced Scorecard,平衡计分卡)是一种战略绩效管理系统,它将企业的绩效评估从传统的财务维度扩展到非财务领域,以提供更全面、深入的业绩衡量。在提供的文档中,BSC绩效考核指标主要分为两大类:财务类和客户类。 1. 财务类指标: - 部门费用的实际与预算比较:如项目研究开发费用、课题费用、招聘费用、培训费用和新产品研发费用,均通过实际支出与计划预算的百分比来衡量,这反映了部门在成本控制上的效率。 - 经营利润指标:如承保利润、赔付率和理赔统计,这些涉及保险公司的核心盈利能力和风险管理水平。 - 人力成本和保费收益:如人力成本与计划的比例,以及标准保费、附加佣金、续期推动费用等与预算的对比,评估业务运营和盈利能力。 - 财务效率:包括管理费用、销售费用和投资回报率,如净投资收益率、销售目标达成率等,反映公司的财务健康状况和经营效率。 2. 客户类指标: - 客户满意度:通过包装水平客户满意度调研,了解产品和服务的质量和客户体验。 - 市场表现:通过市场销售月报和市场份额,衡量公司在市场中的竞争地位和销售业绩。 - 服务指标:如新契约标保完成度、续保率和出租率,体现客户服务质量和客户忠诚度。 - 品牌和市场知名度:通过问卷调查、公众媒体反馈和总公司级评价来评估品牌影响力和市场认知度。 BSC绩效考核指标旨在确保企业的战略目标与财务和非财务目标的平衡,通过量化这些关键指标,帮助管理层做出决策,优化资源配置,并驱动组织的整体业绩提升。同时,这份指标汇总文档强调了财务稳健性和客户满意度的重要性,体现了现代企业对多维度绩效管理的重视。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

【实战演练】俄罗斯方块:实现经典的俄罗斯方块游戏,学习方块生成和行消除逻辑。

![【实战演练】俄罗斯方块:实现经典的俄罗斯方块游戏,学习方块生成和行消除逻辑。](https://p3-juejin.byteimg.com/tos-cn-i-k3u1fbpfcp/70a49cc62dcc46a491b9f63542110765~tplv-k3u1fbpfcp-zoom-in-crop-mark:1512:0:0:0.awebp) # 1. 俄罗斯方块游戏概述** 俄罗斯方块是一款经典的益智游戏,由阿列克谢·帕基特诺夫于1984年发明。游戏目标是通过控制不断下落的方块,排列成水平线,消除它们并获得分数。俄罗斯方块风靡全球,成为有史以来最受欢迎的视频游戏之一。 # 2.
recommend-type

卷积神经网络实现手势识别程序

卷积神经网络(Convolutional Neural Network, CNN)在手势识别中是一种非常有效的机器学习模型。CNN特别适用于处理图像数据,因为它能够自动提取和学习局部特征,这对于像手势这样的空间模式识别非常重要。以下是使用CNN实现手势识别的基本步骤: 1. **输入数据准备**:首先,你需要收集或获取一组带有标签的手势图像,作为训练和测试数据集。 2. **数据预处理**:对图像进行标准化、裁剪、大小调整等操作,以便于网络输入。 3. **卷积层(Convolutional Layer)**:这是CNN的核心部分,通过一系列可学习的滤波器(卷积核)对输入图像进行卷积,以
recommend-type

绘制企业战略地图:从财务到客户价值的六步法

"BSC资料.pdf" 战略地图是一种战略管理工具,它帮助企业将战略目标可视化,确保所有部门和员工的工作都与公司的整体战略方向保持一致。战略地图的核心内容包括四个相互关联的视角:财务、客户、内部流程和学习与成长。 1. **财务视角**:这是战略地图的最终目标,通常表现为股东价值的提升。例如,股东期望五年后的销售收入达到五亿元,而目前只有一亿元,那么四亿元的差距就是企业的总体目标。 2. **客户视角**:为了实现财务目标,需要明确客户价值主张。企业可以通过提供最低总成本、产品创新、全面解决方案或系统锁定等方式吸引和保留客户,以实现销售额的增长。 3. **内部流程视角**:确定关键流程以支持客户价值主张和财务目标的实现。主要流程可能包括运营管理、客户管理、创新和社会责任等,每个流程都需要有明确的短期、中期和长期目标。 4. **学习与成长视角**:评估和提升企业的人力资本、信息资本和组织资本,确保这些无形资产能够支持内部流程的优化和战略目标的达成。 绘制战略地图的六个步骤: 1. **确定股东价值差距**:识别与股东期望之间的差距。 2. **调整客户价值主张**:分析客户并调整策略以满足他们的需求。 3. **设定价值提升时间表**:规划各阶段的目标以逐步缩小差距。 4. **确定战略主题**:识别关键内部流程并设定目标。 5. **提升战略准备度**:评估并提升无形资产的战略准备度。 6. **制定行动方案**:根据战略地图制定具体行动计划,分配资源和预算。 战略地图的有效性主要取决于两个要素: 1. **KPI的数量及分布比例**:一个有效的战略地图通常包含20个左右的指标,且在四个视角之间有均衡的分布,如财务20%,客户20%,内部流程40%。 2. **KPI的性质比例**:指标应涵盖财务、客户、内部流程和学习与成长等各个方面,以全面反映组织的绩效。 战略地图不仅帮助管理层清晰传达战略意图,也使员工能更好地理解自己的工作如何对公司整体目标产生贡献,从而提高执行力和组织协同性。
recommend-type

"互动学习:行动中的多样性与论文攻读经历"

多样性她- 事实上SCI NCES你的时间表ECOLEDO C Tora SC和NCESPOUR l’Ingén学习互动,互动学习以行动为中心的强化学习学会互动,互动学习,以行动为中心的强化学习计算机科学博士论文于2021年9月28日在Villeneuve d'Asq公开支持马修·瑟林评审团主席法布里斯·勒菲弗尔阿维尼翁大学教授论文指导奥利维尔·皮耶昆谷歌研究教授:智囊团论文联合主任菲利普·普雷教授,大学。里尔/CRISTAL/因里亚报告员奥利维耶·西格德索邦大学报告员卢多维奇·德诺耶教授,Facebook /索邦大学审查员越南圣迈IMT Atlantic高级讲师邀请弗洛里安·斯特鲁布博士,Deepmind对于那些及时看到自己错误的人...3谢谢你首先,我要感谢我的两位博士生导师Olivier和Philippe。奥利维尔,"站在巨人的肩膀上"这句话对你来说完全有意义了。从科学上讲,你知道在这篇论文的(许多)错误中,你是我可以依
recommend-type

【实战演练】井字棋游戏:开发井字棋游戏,重点在于AI对手的实现。

![【实战演练】井字棋游戏:开发井字棋游戏,重点在于AI对手的实现。](https://img-blog.csdnimg.cn/3d6666081a144d04ba37e95dca25dbd8.png) # 2.1 井字棋游戏规则 井字棋游戏是一个两人对弈的游戏,在3x3的棋盘上进行。玩家轮流在空位上放置自己的棋子(通常为“X”或“O”),目标是让自己的棋子连成一条直线(水平、垂直或对角线)。如果某位玩家率先完成这一目标,则该玩家获胜。 游戏开始时,棋盘上所有位置都为空。玩家轮流放置自己的棋子,直到出现以下情况之一: * 有玩家连成一条直线,获胜。 * 棋盘上所有位置都被占满,平局。
recommend-type

transformer模型对话

Transformer模型是一种基于自注意力机制的深度学习架构,最初由Google团队在2017年的论文《Attention is All You Need》中提出,主要用于自然语言处理任务,如机器翻译和文本生成。Transformer完全摒弃了传统的循环神经网络(RNN)和卷积神经网络(CNN),转而采用全连接的方式处理序列数据,这使得它能够并行计算,极大地提高了训练速度。 在对话系统中,Transformer模型通过编码器-解码器结构工作。编码器将输入序列转化为固定长度的上下文向量,而解码器则根据这些向量逐步生成响应,每一步都通过自注意力机制关注到输入序列的所有部分,这使得模型能够捕捉到
recommend-type

BSC关键绩效指标详解:财务与运营效率评估

BSC(Balanced Scorecard,平衡计分卡)是一种企业绩效管理系统,它将公司的战略目标分解为四个维度:财务、客户、内部流程和学习与成长。在这个文档中,我们看到的是针对特定行业(可能是保险或保险经纪)的BSC绩效考核指标汇总,专注于财务类和非财务类的关键绩效指标(KPIs)。 财务类指标: 1. 部门费用预算达成率:衡量实际支出与计划费用之间的对比,通过公式 (实际部门费用/计划费用)*100% 来计算,数据来源于部门的预算和实际支出记录。 2. 项目研究开发费用预算达成率:同样用于评估研发项目的资金管理,公式为 (实际项目研究开发费用/计划费用)*100%。 3. 课题费用预算达成率、招聘费用预算达成率、培训费用预算达成率 和 新产品研究开发费用预算达成率:这些都是人力资源相关开支的预算执行情况,涉及到费用的实际花费与计划金额的比例。 4. 承保利润:衡量保险公司盈利能力的重要指标,包括赔付率和寿险各险种的死差损益(实际死亡率与预期死亡率的差异)。 5. 赔付率:反映保险公司的赔付情况,是业务健康度的一个关键指标。 6. 内嵌价值的增加:代表了保单的价值增长,反映了公司长期盈利能力。 7. 人力成本总额控制率:通过比较实际人力成本与计划成本来评估人力成本的有效管理。 8. 标准保费达成率:衡量公司的销售业绩,即实际收取保费与目标保费的比率。 9. 其他费用比率,如附加佣金、续期推动费用、业务推动费用等,用来评估营销费用的效率。 非财务类指标: 1. 销售目标达成率:衡量销售团队完成预定目标的程度,通过实际销售额与计划销售额的比率计算。 2. 理赔率:体现客户服务质量和效率,涉及保险公司处理理赔请求的速度和成功率。 3. 产品/服务销售收入达成率:衡量产品或服务的实际销售效果,反映市场响应和客户满意度。 这些指标集合在一起,提供了全面的视角来评估公司的经营效率、财务表现以及战略执行情况。通过定期跟踪和分析这些数据,企业可以持续优化策略,提升业绩,确保与整体战略目标的一致性。每个指标的数据来源通常来自于相关部门的预算和实际操作记录,确保信息的准确性。