def sigmoid_grad(x): return (1.0 - sigmoid(x)) * sigmoid(x)
时间: 2023-08-29 10:08:50 浏览: 228
sigmoid函数
这是 sigmoid 函数的导数,也称为 sigmoid 函数的梯度。根据链式法则,神经网络的反向传播算法需要计算每层的梯度,用于更新参数。在 sigmoid 函数中,其导数可以用其本身的函数形式表示,即 sigmoid(x) * (1 - sigmoid(x)),也可以用公式 (1 - sigmoid(x)) * sigmoid(x) 表示。sigmoid 函数的导数在输入值为 0 时取得最大值 0.25,当输入值越大或越小时,导数越接近于 0,导致梯度消失问题。因此在实际应用中,更常使用 ReLU、tanh、softmax 等激活函数,它们在大部分输入范围内导数都不为 0,更容易优化。
阅读全文