M, mask = cv2.findHomography(src_pts, dst_pts, cv2.RANSAC,5.0) matchesMask = mask.ravel().tolist()
时间: 2023-04-08 10:02:52 浏览: 142
我可以回答这个问题。这是一个使用OpenCV中的findHomography函数进行图像配准的代码。该函数将源图像中的特征点(src_pts)与目标图像中的特征点(dst_pts)进行匹配,并返回一个变换矩阵M,以及一个掩码mask,用于标记哪些匹配是有效的。在这个代码中,使用了RANSAC算法进行鲁棒性估计,5.0是阈值参数。最后,将掩码转换为列表形式(matchesMask)。
相关问题
改进下面代码使其输出特征连线图和拼接图import cv2 import numpy as np #加载两张需要拼接的图片: img1 = cv2.imread('men3.jpg') img2 = cv2.imread('men4.jpg') #将两张图片转换为灰度图像: gray1 = cv2.cvtColor(img1, cv2.COLOR_BGR2GRAY) gray2 = cv2.cvtColor(img2, cv2.COLOR_BGR2GRAY) #使用Shi-Tomasi角点检测器找到两张图片中的特征点: # 设定Shi-Tomasi角点检测器的参数 feature_params = dict(maxCorners=100, qualityLevel=0.3, minDistance=7, blockSize=7) # 检测特征点 p1 = cv2.goodFeaturesToTrack(gray1, **feature_params) p2 = cv2.goodFeaturesToTrack(gray2, **feature_params) #使用Lucas-Kanade光流法计算特征点的移动向量: # 设定Lucas-Kanade光流法的参数 lk_params = dict(winSize=(15, 15), maxLevel=2, criteria=(cv2.TERM_CRITERIA_EPS | cv2.TERM_CRITERIA_COUNT, 10, 0.03)) # 计算特征点的移动向量 p1, st, err = cv2.calcOpticalFlowPyrLK(gray1, gray2, p1, None, **lk_params) p2, st, err = cv2.calcOpticalFlowPyrLK(gray2, gray1, p2, None, **lk_params) #计算两张图片的变换矩阵: # 使用RANSAC算法计算变换矩阵 M, mask = cv2.findHomography(p1, p2, cv2.RANSAC, 5.0) #将两张图片拼接成一张: # 计算拼接后的图像大小 h, w = img1.shape[:2] pts = np.array([[0, 0], [0, h - 1], [w - 1, h - 1], [w - 1, 0]], dtype=np.float32).reshape(-1, 1, 2) dst = cv2.perspectiveTransform(pts, M) xmin, ymin = np.int32(dst.min(axis=0).ravel() - 0.5) xmax, ymax = np.int32(dst.max(axis=0).ravel() + 0.5) tx, ty = -xmin, -ymin H, W = xmax - xmin, ymax - ymin # 计算拼接后的图像 timg = np.zeros((H, W, 3), dtype=np.uint8) timg[ty:ty + h, tx:tx + w] = img1 new_p2 = cv2.perspectiveTransform(p2, M) timg = cv2.polylines(timg, [np.int32(new_p2 + (tx, ty))], True, (0, 255, 255), 1, cv2.LINE_AA)
以下是改进后的代码,可以输出特征连线图和拼接图:
```python
import cv2
import numpy as np
#加载两张需要拼接的图片:
img1 = cv2.imread('men3.jpg')
img2 = cv2.imread('men4.jpg')
#将两张图片转换为灰度图像:
gray1 = cv2.cvtColor(img1, cv2.COLOR_BGR2GRAY)
gray2 = cv2.cvtColor(img2, cv2.COLOR_BGR2GRAY)
#使用Shi-Tomasi角点检测器找到两张图片中的特征点:
# 设定Shi-Tomasi角点检测器的参数
feature_params = dict(maxCorners=100, qualityLevel=0.3, minDistance=7, blockSize=7)
# 检测特征点
p1 = cv2.goodFeaturesToTrack(gray1, **feature_params)
p2 = cv2.goodFeaturesToTrack(gray2, **feature_params)
#使用Lucas-Kanade光流法计算特征点的移动向量:
# 设定Lucas-Kanade光流法的参数
lk_params = dict(winSize=(15, 15), maxLevel=2, criteria=(cv2.TERM_CRITERIA_EPS | cv2.TERM_CRITERIA_COUNT, 10, 0.03))
# 计算特征点的移动向量
p1, st, err = cv2.calcOpticalFlowPyrLK(gray1, gray2, p1, None, **lk_params)
p2, st, err = cv2.calcOpticalFlowPyrLK(gray2, gray1, p2, None, **lk_params)
#计算两张图片的变换矩阵:
# 使用RANSAC算法计算变换矩阵
M, mask = cv2.findHomography(p1, p2, cv2.RANSAC, 5.0)
#将两张图片拼接成一张:
# 计算拼接后的图像大小
h, w = img1.shape[:2]
pts = np.array([[0, 0], [0, h - 1], [w - 1, h - 1], [w - 1, 0]], dtype=np.float32).reshape(-1, 1, 2)
dst = cv2.perspectiveTransform(pts, M)
xmin, ymin = np.int32(dst.min(axis=0).ravel() - 0.5)
xmax, ymax = np.int32(dst.max(axis=0).ravel() + 0.5)
tx, ty = -xmin, -ymin
H, W = xmax - xmin, ymax - ymin
# 计算拼接后的图像
timg = np.zeros((H, W, 3), dtype=np.uint8)
timg[ty:ty + h, tx:tx + w] = img1
# 计算特征连线图
new_p2 = cv2.perspectiveTransform(p2, M)
timg_line = cv2.polylines(timg.copy(), [np.int32(new_p2 + (tx, ty))], True, (0, 255, 255), 1, cv2.LINE_AA)
# 输出特征连线图
cv2.imshow('Feature Lines', timg_line)
cv2.waitKey(0)
# 拼接图加上特征连线
timg = cv2.polylines(timg, [np.int32(new_p2 + (tx, ty))], True, (0, 255, 255), 1, cv2.LINE_AA)
# 输出拼接图
cv2.imshow('Stitched Image', timg)
cv2.waitKey(0)
```
src_pts = np.float32([keypoint1[m.queryIdx].pt for m in goodMatchePoints]).reshape(-1, 1, 2) dst_pts = np.float32([keypoint2[m.trainIdx].pt for m in goodMatchePoints]).reshape(-1, 1, 2) M, mask = cv2.findHomography(src_pts, dst_pts, cv2.RANSAC, 5.0)怎么输出这段代码中通过ransac算法优化的结果
* dz)) * ...
(- V_wind * cos(theta_wind) * (T(ix, iy, iz) - T(ix+1, iy, iz)) / dx - ...
V_wind * sin(theta_wind) * (T(ix, iy, iz) - T(ix,在使用RANSAC算法优化匹配点之后,可以通过以下步骤输出优化结果:
1. 通过 iy+1, iz)) / dy + ...
V_wind * cos(theta_wind) * (T(ix-1, iy, iz)mask数组选取内点。
```python
matchesMask = mask.ravel().tolist()
```
2. 使用cv2.drawMatches函数将 - T(ix, iy, iz)) / dx + ...
V_wind * sin(theta_wind) * (T(ix, iy-1,匹配结果绘制出来。
```python
draw_params = dict(matchColor=(0, 255, 0), singlePointColor iz) - T(ix, iy, iz)) / dy);
end
end
end
% 边界条件
=None, matchesMask=matchesMask, flags=2)
img3 = cv2.drawMatches(img1, keypoint1, img2, T(1, :, :) = T_left;
T(nx, :, :) = T_right;
T(:, 1, :) = T keypoint2, goodMatchePoints, None, **draw_params)
```
其中,matchesMask表示内点的掩模,flags_front;
T(:, ny, :) = T_back;
T(:, :, 1) = T_bottom;
T(:, :, nz)=2表示只绘制匹配点对,而不显示单个关键点。
3. 将绘制好的结果保存 = T_top;
% 绘制温度分布图
if mod(i, 3600) == 0 % 每到文件中。
```python
cv2.imwrite("result.jpg", img3)
```
注意,以上代码仅供参考,具体实现可能需要根据实际情况进行调整。
阅读全文