digits = cv2.imread('digits.png', 0) rows, cols = np.hsplit(digits, 100) cells = [np.hsplit(row, 50) for row in rows] train_data = np.array(cells).reshape(-1, 400).astype(np.float32) train_labels = np.repeat(np.arange(10), len(train_data) / 10)

时间: 2023-06-08 12:06:02 浏览: 91
这段代码看起来是在做什么? 它是在加载一个包含数字图像的 png 文件,并将每个数字图像分别分割为 50x20 个小单元格。然后,这些小单元格被重新排列成一个数组,其中每个数字被转换为一个 400 维的特征向量,用于训练机器学习模型。每个数字的标签随后被重复多次,并用于训练模型的分类任务。
相关问题

import cv2 import numpy as np import matplotlib.pyplot as plt gray = cv2.imread('digits.png', 0) digits = [np.hsplit(r, 100) for r in np.vsplit(gray, 50)] # 分解数字:50行,100列 np_digits = np.array(digits) # 转换为numpy数组 # 准备训练数据,转换为二维数组,每个图像400个像素 train_data = np_digits.reshape(-1, 400).astype(np.float32) train_labels = np.repeat(np.arange(10), 500)[:, np.newaxis] # 定义标志 knn = cv2.ml.KNearest_create() # 创建kNN分类器 knn.train(train_data, cv2.ml.ROW_SAMPLE, train_labels) # 训练模型 # 用绘图工具创建手写数字5图像(大小20x20)进行测试(黑白二值图像) test = cv2.imread('d5.png', 0) # 打开测试图像 test = cv2.resize(test, (20, 20)) # 转换为20x20大小 test_data = test.reshape(1, 400).astype(np.float32) # 转换为测试数据 ret, result, neighbours, dist = knn.findNearest(test_data, k=3) # 执行测试 print(result.ravel()) print(neighbours.ravel()) # 拍摄图像数字3,进行测试(非黑白二值图像) img2 = cv2.imread('d3.png', 0) img2 = cv2.resize(img2, (20, 20)) ret, img2 = cv2.threshold(img2, 150, 255, cv2.THRESH_BINARY_INV) # 反二值化阈值处理 test_data = img2.reshape(1, 400).astype(np.float32) # 转换为测试数据 ret, result, neighbours, dist = knn.findNearest(test_data, k=3) # 执行测试 print(result.ravel()) print(neighbours.ravel()) 以上代码怎么优化

下面是对代码的一些优化建议: 1. 使用 with 语句打开文件:在读取图片时,最好使用 with 语句打开文件,这样可以确保文件在使用后被正确关闭,也可以避免一些意外情况下的错误。 2. 使用 reshape 的 -1 参数:在将 digits 转换为 numpy 数组时,可以使用 reshape 函数的 -1 参数,这样 numpy 将自动计算数组的大小。 3. 使用 ravel 替换 flatten:在将结果打印出来时,可以使用 ravel 函数替换 flatten 函数,因为 ravel 函数返回的是一个视图,而不是一个副本,因此更加高效。 4. 优化二值化处理:在对测试图像进行二值化处理时,可以使用 adaptiveThreshold 函数来自适应地进行阈值处理,这比使用固定的阈值要更加准确。 5. 使用 plt.imshow 显示图像:在显示图像时,可以使用 plt.imshow 函数,这样可以更加方便地进行调整和处理。 6. 添加注释:在代码中添加注释,可以帮助其他人更好地理解代码的含义和作用。 下面是优化后的代码: ``` import cv2 import numpy as np import matplotlib.pyplot as plt # 打开文件并读取灰度图像 with open('digits.png', 'rb') as f: gray = cv2.imdecode(np.frombuffer(f.read(), np.uint8), cv2.IMREAD_GRAYSCALE) # 分解数字:50行,100列 digits = np.hsplit(np.vstack(np.hsplit(gray, 100)), 50) # 转换为numpy数组 np_digits = np.array(digits) # 转换为二维数组,每个图像400个像素 train_data = np_digits.reshape(-1, 400).astype(np.float32) # 定义标志 train_labels = np.repeat(np.arange(10), 500)[:, np.newaxis] # 创建kNN分类器 knn = cv2.ml.KNearest_create() # 训练模型 knn.train(train_data, cv2.ml.ROW_SAMPLE, train_labels) # 用绘图工具创建手写数字5图像(大小20x20)进行测试(黑白二值图像) test = cv2.imread('d5.png', cv2.IMREAD_GRAYSCALE) # 转换为20x20大小 test = cv2.resize(test, (20, 20)) # 自适应阈值二值化处理 test = cv2.adaptiveThreshold(test, 255, cv2.ADAPTIVE_THRESH_MEAN_C, cv2.THRESH_BINARY_INV, 11, 2) # 转换为测试数据 test_data = test.reshape(1, 400).astype(np.float32) # 执行测试 ret, result, neighbours, dist = knn.findNearest(test_data, k=3) # 打印测试结果 print(result.ravel()) print(neighbours.ravel()) # 拍摄图像数字3,进行测试(非黑白二值图像) img2 = cv2.imread('d3.png', cv2.IMREAD_GRAYSCALE) # 转换为20x20大小 img2 = cv2.resize(img2, (20, 20)) # 自适应阈值二值化处理 img2 = cv2.adaptiveThreshold(img2, 255, cv2.ADAPTIVE_THRESH_MEAN_C, cv2.THRESH_BINARY_INV, 11, 2) # 转换为测试数据 test_data = img2.reshape(1, 400).astype(np.float32) # 执行测试 ret, result, neighbours, dist = knn.findNearest(test_data, k=3) # 打印测试结果 print(result.ravel()) print(neighbours.ravel()) # 显示测试图像 plt.imshow(test, cmap='gray') plt.show() # 显示训练图像 plt.imshow(gray, cmap='gray') plt.show() ```

import cv2 import numpy as np def hog(img): hog = cv2.HOGDescriptor((20,20),(8,8), (4,4),(8,8),9,1,-1,0,0.2,1,64,True) hog_descriptor=hog.compute(img) hog_descriptor=np.squeeze(hog_descriptor) return hog_descriptor img = cv2.imread((r'C:\Users\Administrator\Pictures\Camera Roll\8.png',0) digits=[np.hsplit(row,100) for row in np.vsplit(img,50)] labels = np.repeat(np.arange(10),500)[:,np.newaxis] hogdata = [list(map(hog,row)) for row in digits] trainData = np.float32(hogdata).reshape(-1,144) svm = cv2.ml.SVM_create() #设置相关参数 svm.setKernel(cv2.ml.SVM_LINEAR) svm.setType(cv2.ml.SVM_C_SVC) svm.setC(2.67) svm.setGamma(5.383) svm.train(trainData, cv2.ml.ROW_SAMPLE, labels) #训练模型 #用绘图工具创建的手写数字5图像(大小为20*20)进行测试 test= cv2.imread(r'C:\Users\Administrator\Pictures\Camera Roll\6.png') #打开图像test_data=hog(test) test_data=test_data.reshape(1,144).astype(np.float32) result = svm.predict(test_data)[1] print('识别结果:',np.squeeze(result)) #用绘图工具创建的手写数字8图像(大小为20*20)进行测试 test= cv2.imread('d8.jpg',0) test_data=hog(test) test_data=test_data.reshape(1,144).astype(np.float32) #转换为测试数据 result = svm.predict(test_data)[1] print('识别结果:',np.squeeze(result))纠正代码

在您提供的代码中,有以下几处需要纠正的错误: 1. 第一行 `import cv2 import numpy as np` 应该改为两行代码: ``` import cv2 import numpy as np ``` 2. 第二行 `def hog(img):` 后面应该加上缩进。 3. 第三行 `hog = cv2.HOGDescriptor((20,20),(8,8), (4,4),(8,8),9,1,-1,0,0.2,1,64,True)`,其中参数的数量和顺序不对,应该改为: ``` hog = cv2.HOGDescriptor((20,20),(8,8),(4,4),(8,8),9,1,-1,0,0.2,True,64) ``` 4. 第四行 `hog_descriptor=hog.compute(img)`,缺少一个括号,应该改为: ``` hog_descriptor=hog.compute(img) ``` 5. 第五行 `hog_descriptor=np.squeeze(hog_descriptor)`,该行代码不需要缩进。 6. 第七行 `img = cv2.imread((r'C:\Users\Administrator\Pictures\Camera Roll\8.png',0)`,`cv2.imread` 函数中的路径需要加上一个括号,应该改为: ``` img = cv2.imread(r'C:\Users\Administrator\Pictures\Camera Roll\8.png',0) ``` 7. 第八行 `digits=[np.hsplit(row,100) for row in np.vsplit(img,50)]`,该行代码不需要缩进。 8. 第九行 `labels = np.repeat(np.arange(10),500)[:,np.newaxis]`,该行代码不需要缩进。 9. 第十行 `hogdata = [list(map(hog,row)) for row in digits]`,该行代码不需要缩进。 10. 第十一行 `trainData = np.float32(hogdata).reshape(-1,144)`,该行代码不需要缩进。 11. 第十二行 `svm = cv2.ml.SVM_create() #设置相关参数`,该行代码不需要缩进。 12. 第十三行 `svm.setKernel(cv2.ml.SVM_LINEAR) svm.setType(cv2.ml.SVM_C_SVC) svm.setC(2.67) svm.setGamma(5.383) svm.train(trainData, cv2.ml.ROW_SAMPLE, labels)`,该行代码中的多个函数调用应该分别放在一行,且需要缩进。 13. 第十五行 `test= cv2.imread(r'C:\Users\Administrator\Pictures\Camera Roll\6.png')`,该行代码不需要缩进。 14. 第十六行 `test_data=hog(test) test_data=test_data.reshape(1,144).astype(np.float32)`,该行代码中的两个函数调用应该分别放在一行,且需要缩进。 15. 第十七行 `result = svm.predict(test_data)[1]`,该行代码不需要缩进。 16. 第十八行 `print('识别结果:',np.squeeze(result))`,该行代码不需要缩进。 17. 第二十行 `test= cv2.imread('d8.jpg',0)`,该行代码不需要缩进。 18. 第二十一行 `test_data=hog(test) test_data=test_data.reshape(1,144).astype(np.float32)`,该行代码中的两个函数调用应该分别放在一行,且需要缩进。 19. 第二十二行 `result = svm.predict(test_data)[1]`,该行代码不需要缩进。 20. 第二十三行 `print('识别结果:',np.squeeze(result))`,该行代码不需要缩进。 纠正后的代码如下所示: ``` import cv2 import numpy as np def hog(img): hog = cv2.HOGDescriptor((20,20),(8,8),(4,4),(8,8),9,1,-1,0,0.2,True,64) hog_descriptor=hog.compute(img) hog_descriptor=np.squeeze(hog_descriptor) return hog_descriptor img = cv2.imread(r'C:\Users\Administrator\Pictures\Camera Roll\8.png',0) digits=[np.hsplit(row,100) for row in np.vsplit(img,50)] labels = np.repeat(np.arange(10),500)[:,np.newaxis] hogdata = [list(map(hog,row)) for row in digits] trainData = np.float32(hogdata).reshape(-1,144) svm = cv2.ml.SVM_create() svm.setKernel(cv2.ml.SVM_LINEAR) svm.setType(cv2.ml.SVM_C_SVC) svm.setC(2.67) svm.setGamma(5.383) svm.train(trainData, cv2.ml.ROW_SAMPLE, labels) test= cv2.imread(r'C:\Users\Administrator\Pictures\Camera Roll\6.png',0) test_data=hog(test) test_data=test_data.reshape(1,144).astype(np.float32) result = svm.predict(test_data)[1] print('识别结果:',np.squeeze(result)) test= cv2.imread('d8.jpg',0) test_data=hog(test) test_data=test_data.reshape(1,144).astype(np.float32) result = svm.predict(test_data)[1] print('识别结果:',np.squeeze(result)) ```
阅读全文

相关推荐

最新推荐

recommend-type

白色大气风格的建筑商业网站模板下载.rar

白色大气风格的建筑商业网站模板下载.rar
recommend-type

面向对象编程语言Objective-C基础语法详解及应用

内容概要:本文详细介绍了面向对象编程语言Objective-C的基础语法,包括其历史背景、特点、环境搭建、基本语法、面向对象编程、高级特性和实际应用。具体涵盖的内容包括Objective-C的历史发展、面向对象编程的核心特性、变量和数据类型、控制结构、函数、数组和字典的使用,以及类、对象、属性和方法的定义与使用。此外,还介绍了高级特性如协议和委托、类别和扩展、ARC、块和GCD。最后,通过示例项目展示了如何在Xcode中创建和调试Objective-C程序,以及如何使用Cocoa和Cocoa Touch框架。 适合人群:具备一定的编程基础,希望学习或深入了解Objective-C编程的开发人员。 使用场景及目标:适用于需要开发macOS和iOS应用的开发者,帮助他们掌握Objective-C的基本语法和高级特性,提高编程效率和代码质量。 其他说明:本文不仅提供了详细的理论讲解,还通过实际代码示例展示了如何在Xcode中创建和调试Objective-C项目,适合初级到中级水平的开发人员学习和参考。
recommend-type

RStudio中集成Connections包以优化数据库连接管理

资源摘要信息:"connections:https" ### 标题解释 标题 "connections:https" 直接指向了数据库连接领域中的一个重要概念,即通过HTTP协议(HTTPS为安全版本)来建立与数据库的连接。在IT行业,特别是数据科学与分析、软件开发等领域,建立安全的数据库连接是日常工作的关键环节。此外,标题可能暗示了一个特定的R语言包或软件包,用于通过HTTP/HTTPS协议实现数据库连接。 ### 描述分析 描述中提到的 "connections" 是一个软件包,其主要目标是与R语言的DBI(数据库接口)兼容,并集成到RStudio IDE中。它使得R语言能够连接到数据库,尽管它不直接与RStudio的Connections窗格集成。这表明connections软件包是一个辅助工具,它简化了数据库连接的过程,但并没有改变RStudio的用户界面。 描述还提到connections包能够读取配置,并创建与RStudio的集成。这意味着用户可以在RStudio环境下更加便捷地管理数据库连接。此外,该包提供了将数据库连接和表对象固定为pins的功能,这有助于用户在不同的R会话中持续使用这些资源。 ### 功能介绍 connections包中两个主要的功能是 `connection_open()` 和可能被省略的 `c`。`connection_open()` 函数用于打开数据库连接。它提供了一个替代于 `dbConnect()` 函数的方法,但使用完全相同的参数,增加了自动打开RStudio中的Connections窗格的功能。这样的设计使得用户在使用R语言连接数据库时能有更直观和便捷的操作体验。 ### 安装说明 描述中还提供了安装connections包的命令。用户需要先安装remotes包,然后通过remotes包的`install_github()`函数安装connections包。由于connections包不在CRAN(综合R档案网络)上,所以需要使用GitHub仓库来安装,这也意味着用户将能够访问到该软件包的最新开发版本。 ### 标签解读 标签 "r rstudio pins database-connection connection-pane R" 包含了多个关键词: - "r" 指代R语言,一种广泛用于统计分析和图形表示的编程语言。 - "rstudio" 指代RStudio,一个流行的R语言开发环境。 - "pins" 指代R包pins,它可能与connections包一同使用,用于固定数据库连接和表对象。 - "database-connection" 指代数据库连接,即软件包要解决的核心问题。 - "connection-pane" 指代RStudio IDE中的Connections窗格,connections包旨在与之集成。 - "R" 代表R语言社区或R语言本身。 ### 压缩包文件名称列表分析 文件名称列表 "connections-master" 暗示了一个可能的GitHub仓库名称或文件夹名称。通常 "master" 分支代表了软件包或项目的稳定版或最新版,是大多数用户应该下载和使用的版本。 ### 总结 综上所述,connections包是一个专为R语言和RStudio IDE设计的软件包,旨在简化数据库连接过程并提供与Connections窗格的集成。它允许用户以一种更为方便的方式打开和管理数据库连接,而不直接提供与Connections窗格的集成。connections包通过读取配置文件和固定连接对象,增强了用户体验。安装connections包需通过remotes包从GitHub获取最新开发版本。标签信息显示了connections包与R语言、RStudio、数据库连接以及R社区的紧密联系。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

Keil uVision5全面精通指南

# 摘要 Keil uVision5是一个集成开发环境,广泛应用于嵌入式系统的开发。本文从基础入门开始,详细介绍了Keil uVision5的项目管理、配置、编程实践、高级功能及技巧,并通过项目案例分析,深入阐述了其在实际开发中的应用。本篇论文特别注重于项目创建、目标配置、调试环境搭建、性能优化、脚本编程与自动化、高级调试技术,以及通过嵌入式操作系统集成和驱动开发流程的案例分析,展示了Keil uVision5的实用性和高效性。文章还展望了Keil uVision5的未来发展趋势,并提供了社区资源和学习渠道,为读者提供了一个全面掌握Keil uVision5的平台。 # 关键字 Keil u
recommend-type

flink提交给yarn19个全量同步MYsqlCDC的作业,flink的配置参数怎样设置

在Flink中,如果你需要将19个MySQL CDC(Change Data Capture)的全量同步作业提交到YARN上,你需要确保Flink集群和YARN进行了正确的集成,并配置了适当的参数。以下是可能涉及到的一些关键配置: 1. **并行度(Parallelism)**:每个作业的并行度应该设置得足够高,以便充分利用YARN提供的资源。例如,如果你有19个任务,你可以设置总并行度为19或者是一个更大的数,取决于集群规模。 ```yaml parallelism = 19 或者 根据实际资源调整 ``` 2. **YARN资源配置**:Flink通过`yarn.a
recommend-type

PHP博客旅游的探索之旅

资源摘要信息:"博客旅游" 博客旅游是一个以博客形式分享旅行经验和旅游信息的平台。随着互联网技术的发展和普及,博客作为一种个人在线日志的形式,已经成为人们分享生活点滴、专业知识、旅行体验等的重要途径。博客旅游正是结合了博客的个性化分享特点和旅游的探索性,让旅行爱好者可以记录自己的旅游足迹、分享旅游心得、提供目的地推荐和旅游攻略等。 在博客旅游中,旅行者可以是内容的创造者也可以是内容的消费者。作为创造者,旅行者可以通过博客记录下自己的旅行故事、拍摄的照片和视频、体验和评价各种旅游资源,如酒店、餐馆、景点等,还可以分享旅游小贴士、旅行日程规划等实用信息。作为消费者,其他潜在的旅行者可以通过阅读这些博客内容获得灵感、获取旅行建议,为自己的旅行做准备。 在技术层面,博客平台的构建往往涉及到多种编程语言和技术栈,例如本文件中提到的“PHP”。PHP是一种广泛使用的开源服务器端脚本语言,特别适合于网页开发,并可以嵌入到HTML中使用。使用PHP开发的博客旅游平台可以具有动态内容、用户交互和数据库管理等强大的功能。例如,通过PHP可以实现用户注册登录、博客内容的发布与管理、评论互动、图片和视频上传、博客文章的分类与搜索等功能。 开发一个功能完整的博客旅游平台,可能需要使用到以下几种PHP相关的技术和框架: 1. HTML/CSS/JavaScript:前端页面设计和用户交互的基础技术。 2. 数据库管理:如MySQL,用于存储用户信息、博客文章、评论等数据。 3. MVC框架:如Laravel或CodeIgniter,提供了一种组织代码和应用逻辑的结构化方式。 4. 服务器技术:如Apache或Nginx,作为PHP的运行环境。 5. 安全性考虑:需要实现数据加密、输入验证、防止跨站脚本攻击(XSS)等安全措施。 当创建博客旅游平台时,还需要考虑网站的可扩展性、用户体验、移动端适配、搜索引擎优化(SEO)等多方面因素。一个优质的博客旅游平台,不仅能够提供丰富的内容,还应该注重用户体验,包括页面加载速度、界面设计、内容的易于导航等。 此外,博客旅游平台还可以通过整合社交媒体功能,允许用户通过社交媒体账号登录、分享博客内容到社交网络,从而提升平台的互动性和可见度。 综上所述,博客旅游作为一个结合了旅行分享和在线日志的平台,对于旅行者来说,不仅是一个记录和分享旅行体验的地方,也是一个获取旅行信息、学习旅游知识的重要资源。而对于开发者来说,构建这样一个平台需要运用到多种技术和考虑多个技术细节,确保平台的功能性和用户体验。
recommend-type

"互动学习:行动中的多样性与论文攻读经历"

多样性她- 事实上SCI NCES你的时间表ECOLEDO C Tora SC和NCESPOUR l’Ingén学习互动,互动学习以行动为中心的强化学习学会互动,互动学习,以行动为中心的强化学习计算机科学博士论文于2021年9月28日在Villeneuve d'Asq公开支持马修·瑟林评审团主席法布里斯·勒菲弗尔阿维尼翁大学教授论文指导奥利维尔·皮耶昆谷歌研究教授:智囊团论文联合主任菲利普·普雷教授,大学。里尔/CRISTAL/因里亚报告员奥利维耶·西格德索邦大学报告员卢多维奇·德诺耶教授,Facebook /索邦大学审查员越南圣迈IMT Atlantic高级讲师邀请弗洛里安·斯特鲁布博士,Deepmind对于那些及时看到自己错误的人...3谢谢你首先,我要感谢我的两位博士生导师Olivier和Philippe。奥利维尔,"站在巨人的肩膀上"这句话对你来说完全有意义了。从科学上讲,你知道在这篇论文的(许多)错误中,你是我可以依
recommend-type

【单片机编程实战】:掌握流水灯与音乐盒同步控制的高级技巧

![单片机编程](https://static.mianbaoban-assets.eet-china.com/xinyu-images/MBXY-CR-48cf6abe199bab09d31c122e1f49cea4.png) # 摘要 单片机作为电子技术领域的基础组件,广泛应用于各类控制项目。本文从基础开始,详细探讨了单片机在流水灯和音乐盒项目中的应用原理,并分析了如何实现这两个功能的同步控制。通过对硬件和软件层面的深入剖析,本文提供了一系列实践操作和高级技巧,旨在提升流水灯与音乐盒同步控制的性能和效率。通过本研究,读者将能够更好地理解和掌握单片机在复杂控制系统中的应用,进而创新开发更多
recommend-type

java 号码后四位用‘xxxx’脱敏

在Java中,对电话号码后四位进行脱敏通常是为了保护用户隐私。你可以通过字符串截取和替换的方式来实现这个功能。下面是一个简单的示例: ```java public class Main { public static void main(String[] args) { String phoneNumber = "1234567890"; // 假设原始手机号 int startCutOff = phoneNumber.length() - 4; // 要开始切割的位置是后四位的起始位置 String maskedNumber = ph