> tcga_luad_exp2 <-log2(tcga_luad_exp2+1) error in fun(left, right) : 二进列
时间: 2024-02-04 20:00:45 浏览: 88
这个错误表示在R语言中进行二进制对数运算时出现了问题。二进制对数运算是指以2为底的对数运算,常用来处理数据的对数转换,以便在数据分析过程中更好地展示和分析数据。
根据这个错误信息,在代码中"tcga_luad_exp2"这个变量可能是进行二进制对数运算的对象。然而,代码中可能出现了一些问题,导致R无法正确执行这个运算。可能的原因有以下几点:
1. 变量名错误:变量名可能没有正确定义,或者在代码的其他位置不正确定义了同名的变量。
2. 语法错误:在进行二进制对数运算时,可能使用了不合法的语法,导致R无法正确解析运算。
3. 数据类型错误:变量"tcga_luad_exp2"可能是一个不支持二进制对数运算的数据类型,导致R无法进行这个运算。
为了解决这个问题,你可以尝试以下几点:
1. 检查变量名:确保变量"tcga_luad_exp2"的变量名拼写正确,并且没有其他同名的变量。
2. 语法检查:仔细检查代码进行二进制对数运算的语法是否正确,保证使用了合法的R语言语法。
3. 数据类型转换:如果"tcga_luad_exp2"是一个数据框或者其他不支持二进制对数运算的数据类型,你可以尝试将其转换为支持运算的数据类型,如向量或者数值型数据。
如果以上方法无法解决问题,你可以提供更多的代码和错误信息,以便我们给出更详细的解答。
相关问题
Error: unexpected symbol in "metadata_pair <- metadata_pair[metadata_pair$TCGA_id !=TCGA-44-3917-01B"
这个错误通常是因为在代码中使用了无效的符号。在这种情况下,是因为“-”符号没有被正确地引用。请尝试将“-”符号改为下划线“_”或使用引号将其括起来,例如:
```
metadata_pair <- metadata_pair[metadata_pair$TCGA_id != "TCGA-44-3917-01B"]
```
或者
```
metadata_pair <- metadata_pair[metadata_pair$TCGA_id != TCGA_44_3917_01B]
```
解释这段代码for (i in cancer_types){ admat<-read.csv(str_c(dir,"\tcga_data\",i,"\admat.csv"),check.names=F) positive_rna<-read.csv(str_c(dir,"\tcga_data\",i,"\positive_normalized_rna.csv"),row.names = 1, check.names = F) negative_rna<-read.csv(str_c(dir,"\tcga_data\",i,"\negative_normalized_rna.csv"),row.names = 1, check.names = F) positive_mi<-read.csv(str_c(dir,"\tcga_data\",i,"\positive_normalized_mi.csv"),row.names = 1, check.names = F) negative_mi<-read.csv(str_c(dir,"\tcga_data\",i,"\negative_normalized_mi.csv"),row.names = 1, check.names = F) normal_rna<-read.csv(str_c(dir,"\tcga_data\",i,"\normal_normalized_rna.csv"),row.names = 1, check.names = F) normal_mi<-read.csv(str_c(dir,"\tcga_data\",i,"\normal_normalized_mi.csv"),row.names = 1, check.names = F) positive_delta<-cal_delta_pcc(admat,normal_rna,normal_mi,positive_rna,positive_mi) negative_delta<-cal_delta_pcc(admat,normal_rna,normal_mi,negative_rna,negative_mi) wilcox<-delta_wilcox_test(positive_delta,negative_delta,wilcox_pval) write.csv(wilcox,str_c(dir,"\tcga_data\",i,"\wilcox.csv"),quote=F,row.names=F) row.names(wilcox)<-str_c(wilcox[,1],"",wilcox[,2]) positive_delta<-na.omit(positive_delta) row.names(positive_delta)<-str_c(positive_delta[,1],"",positive_delta[,2]) negative_delta<-na.omit(negative_delta) row.names(negative_delta)<-str_c(negative_delta[,1],"_",negative_delta[,2]) positive_delta<-positive_delta[row.names(positive_delta)%in%row.names(wilcox),] negative_delta<-negative_delta[row.names(negative_delta)%in%row.names(wilcox),] negative_delta<-negative_delta ml_input<-merge(positive_delta,negative_delta,by="row.names") ml_input<-ml_input write.csv(ml_input,str_c(dir,"\tcga_data\",i,"\ml_input.csv"),quote=F,row.names=F) }
这段代码是一个循环,它遍历一个名为"cancer_types"的列表中的每个元素。在循环的每一次迭代中,它执行以下操作:
1. 读取一个名为"admat.csv"的文件,并将其存储为一个数据框对象(admat)。
2. 读取名为"positive_normalized_rna.csv"和"negative_normalized_rna.csv"的文件,并将它们分别存储为数据框对象(positive_rna和negative_rna)。
3. 读取名为"positive_normalized_mi.csv"和"negative_normalized_mi.csv"的文件,并将它们分别存储为数据框对象(positive_mi和negative_mi)。
4. 读取名为"normal_normalized_rna.csv"和"normal_normalized_mi.csv"的文件,并将它们分别存储为数据框对象(normal_rna和normal_mi)。
5. 使用上述数据框对象以及一个名为"cal_delta_pcc"的函数计算正样本和负样本的delta值(positive_delta和negative_delta)。
6. 使用上述delta值以及一个名为"delta_wilcox_test"的函数计算Wilcoxon秩和检验结果(wilcox)。
7. 将Wilcoxon秩和检验结果(wilcox)写入名为"wilcox.csv"的文件。
8. 设置Wilcoxon秩和检验结果(wilcox)的行名(row.names)为两个变量的组合。
9. 删除正样本和负样本的delta值中的缺失值(na.omit)。
10. 设置正样本和负样本的delta值的行名(row.names)为两个变量的组合。
11. 从正样本和负样本的delta值中选择那些在Wilcoxon秩和检验结果(wilcox)中存在的行。
12. 将正样本和负样本的delta值进行合并(merge),并存储为一个名为"ml_input"的数据框对象。
13. 将合并后的数据框对象(ml_input)写入名为"ml_input.csv"的文件。
总体来说,这段代码根据给定的"cancer_types"列表中的每个元素,读取相应的数据文件,并进行一系列计算和处理操作,最终生成一个名为"ml_input.csv"的文件。
阅读全文